
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Moskvyak, Olga & Maire, Frederic
(2017)
Learning geometric equivalence between patterns using embedding neu-
ral networks.
In Li, H, Guo, Y, Cai, T, & Mushed, M (Eds.) Proceedings of the 2017 In-
ternational Conference on Digital Image Computing: Techniques and Ap-
plications (DICTA).
IEEE, United States of America, pp. 778-785.

This file was downloaded from: https://eprints.qut.edu.au/114924/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/DICTA.2017.8227457

https://eprints.qut.edu.au/view/person/Moskvyak,_Olga.html
https://eprints.qut.edu.au/view/person/Maire,_Frederic.html
https://eprints.qut.edu.au/114924/
https://doi.org/10.1109/DICTA.2017.8227457


Learning Geometric Equivalence Between Patterns
Using Embedding Neural Networks

Olga Moskvyak
School of Electrical Engineering and Computer Science

Queensland University of Technology
Brisbane, Australia

Email: olgamoskvyak@gmail.com

Frederic Maire
School of Electrical Engineering and Computer Science

Queensland University of Technology
Brisbane, Australia

Email: f.maire@qut.edu.au

Abstract—Despite impressive results in object classification,
verification and recognition, most deep neural network based
recognition systems become brittle when the view point of the
camera changes dramatically. Robustness to geometric trans-
formations is highly desirable for applications like wild life
monitoring where there is no control on the pose of the objects
of interest. The images of different objects viewed from various
observation points define equivalence classes where by definition
two images are said to be equivalent if they are views from
the same object. These equivalence classes can be learned via
embeddings that map the input images to vectors of real numbers.
During training, equivalent images are mapped to vectors that get
pulled closer together, whereas if the images are not equivalent
their associated vectors get pulled apart. In this work, we
present an effective deep neural network model for learning
the homographic equivalence between patterns. The long term
aim of this research is to develop more robust manta ray
recognizers. Manta rays bear unique natural spot patterns on
their bellies. Visual identification based on these patterns from
underwater images enables a better understanding of habitat use
by monitoring individuals within populations.

We test our model on a dataset of artificially generated patterns
that resemble natural patterning. Our experiments demonstrate
that the proposed architecture is able to discriminate between
patterns subjected to large homographic transformations.

I. INTRODUCTION

Common machine learning tasks like classification and
recognition involve learning an appearance model. These tasks
can be interpreted and even reduced to the problem of learning
manifolds from a training set [1]. Useful appearance models
create an invariant representation of the objects of interest
under a range of conditions [2]. A good representation should
combine invariance and discriminability. For example, in facial
recognition where the task is to compare two images and
determine whether they show the same person, the output of
the system should be invariant to the pose of the heads. More
generally, the category of an object contained in an image
should be invariant to viewpoint changes.

The motivation for our work is the lack of fully automated
identification systems for manta rays. The techniques devel-
oped for such systems can potentially be applied to other
marine species that bear a unique pattern on their surface. The
task of recognizing manta rays is challenging because of the
heterogeneity of photographic conditions and equipment used
in acquiring manta ray photo ID images like those in Figures 1

Fig. 1. Manta rays bear natural patterning across their belly. These unique
spots enable the identification of individuals.

and 2. Many of those pictures are submitted by recreational
divers. For those pictures, the camera parameters are generally
not known. Manta rays are born with natural spot patterning
that stays unchanged throughout their life and can be used like
human fingerprints to identify individuals [3]. These individual
patterns enable scientists to study populations, track long range
movements and record habitat use.

The state of the art in manta ray recognition is the system
proposed in [3]. Their software requires user input to manually
align and normalize the 2D orientation of the ray within the
image. Moreover, the user has to select a rectangular region
of interest containing the spot pattern. The images have also
to be of high quality. In practice, marine biologists still prefer
to use a decision tree that they run manually.

The local max-pooling layers in Convolutional Neural Net-
works (CNN) allow a network to be somewhat spatially
invariant to the position of features. As max-pooling is typ-
ically executed on windows only a few pixels wide, many
layers of max-pooling and convolutions, as well as a lot of
training examples are required to achieve a more global spatial
invariance [4].

A recent hybrid approach introduces a new learnable mod-



Fig. 2. The same manta as in Figure 1. A non affine transformation is required
to align the belly patterns of the two images.

ule, the Spatial Transformer, which explicitly allows the
spatial manipulation of data within the network [5]. This
differentiable module can be inserted into existing convo-
lutional architectures, giving neural networks the ability to
actively spatially transform feature maps, conditional on the
feature map itself. However, this approach requires the user to
specify the parametric form of the transformation. We prefer
a less engineered approach with an end-to-end solution that is
agnostic to the type of transformation to be learned.

In order to develop robust algorithms for recognizing manta
spot patterns, we consider the problem of recognizing artifi-
cially generated patterns subjected to projective transforma-
tions that simulate changes in the camera view point. Artificial
data allow us to experiment with a large amount of patterns
and compare different network architectures to select the most
suitable for learning geometric equivalence. In this paper, we
focus on the verification problem. That is, we try to guess
whether two images are from the same equivalence class or
not.

Our main contribution is the demonstration that a relatively
simple class of neural networks can distinguish between pat-
terns under a wide range of viewing conditions. We present a
deep neural network that can learn to recognize homographi-
cally equivalent patterns. We explore the suitability of different
architectures.

The paper is structured as follows. Section II reviews related
work in face verification and applications that use Siamese and
Triplet network architectures. Section III discusses Siamese
and Triplet network architecture and the loss functions used for
training. Section IV describes the design of our experiments,
and provides quantitative results. Section V concludes the
paper.

II. RELATED WORK

Our approach to learning geometric equivalence is inspired
by some of the solutions created for the face verification

Fig. 3. Triplet network architecture. Three input images A, B and C are fed
to three identical subnetworks that share the same weights. Embedding vectors
f(A), f(B) and f(C) are computed for each image. The Euclidian distance
between these embeddings provides a proxy for the similarity between images.
The whole network is trained by minimizing a loss function that penalizes
large distances between the embeddings of images from the same class, and
penalizes small distances between the embeddings of images from different
classes.

problem. That is the problem of deciding whether a given
pair of face images correspond to the same person or not.
The verification task is different from the traditional image
classification problem where all classes are known in advance
and there are a sufficient number of training examples for
each class. In the verification problem the number of classes
(e.g. distinct individuals) is not specified in advance. The
verification task is generally decomposed into two main steps
[6], [7]:

1) non-linear mapping of the input vector to a lower
dimensional embedding vector space,

2) computation of the distance between embedding vectors
to decide whether the two inputs are from the same
equivalence class.

During training, the model learns a similarity metric that
minimizes distances between representatives of the same class
(e.g. faces of the same person in various conditions and facial
expressions) and maximizes distances between representatives
of distinct classes (e.g. faces of different people). The trained
network is then used to compare previously unseen query
images with images stored in a database.

Face verification has received great attention in recent years
and a range of effective techniques have been proposed for
identifying faces in various conditions [8]–[10]. Convolutional
neural networks are used to learn a mapping from a face image
space to an Euclidean space of a smaller dimension.

The distance between the learned embedding vectors cor-
respond to a face similarity measure [8]. Hierarchical non-
linear transformations have been proposed to map face images
into a feature space [7]. Deep CNN can also be trained to
extract features on which a joint Bayesian metric enables
the estimation of the likelihood that two images are of the
same person [11]. FaceNet system [9] implements a deep
CNN that projects face images into a compact Euclidean space
where again the distance between projections relates to face
similarity.



Siamese and Triplet networks are two popular network
architectures for the verification task. A Siamese network
accepts a pair of images as input and feed the images to
two identical subnetworks that share the same weights [6]. In
[12], Siamese and Triplet networks are used to learn image
descriptors. Siamese networks have been used for tracking
arbitrary objects in videos by comparing the initial appearance
of an object with occurrences in subsequent frames [13].
Using Siamese architecture with a convolutional network in
its core, strong results have been achieved in one-shot image
recognition [14] where a prediction is made based only on a
single example of a new class.

Inspired by the Siamese architecture, a Triplet network
accepts a triplet of images which consists of an anchor image,
a positive image (an example of the same class) and a
negative image (an example of a different class). The loss
used to optimize a Triplet network aims to minimize the
distance between the anchor image and the positive image
and maximize the distance between the anchor image and
the negative image [9]. Triplet networks are used to learn a
compact representation for the image retrieval task. The triplet
loss is utilized to optimize a ranking objective [15]. Triplet
networks have been successfully applied for learning a fine-
grained similarity metric directly from images [16]. The task
of person re-identification across cameras has been explored
using a triplet of networks where a shared CNN model learns
both global full-body and local body-parts features and a triplet
loss function separates different classes with a predefined
threshold [17].

In this paper we demonstrate that the Siamese and the
Triplet network architectures are suitable for the task of
learning the equivalence of patterns subjected to homographic
transformations.

III. LEARNING EQUIVALENCE CLASSES

In this section, we compare two candidate neural network
architectures, namely the Siamese and Triplet networks, to
assess their suitability for learning equivalence modulo ho-
mographic transformations. Both architectures use a trainable
subnetwork f(P ) that maps each image P to an embedding
vector f(P ) ∈ Rd where d is a dimension chosen by the de-
signer of the network. We also explore different convolutional
architectures and loss functions for the shared subnetwork
f(P ) on a dataset of artificially generated patterns.

A. Siamese network architecture

A Siamese network consists of two identical subnetworks
that share the same weights followed by a distance calculation
layer [6]. The input of a Siamese network is a pair of images
(Pi, Pj) and a label yij . If the two images are deemed from
the same equivalence classes, the pair is called a positive
pair, and the target value is yij = 0. Whereas for a pair of
images from different equivalence classes, the pair is called
a negative pair, and the target value is yij = 1. The target
value yij can be interpreted as the desired distance between
the embedding vectors. The input images Pi, Pj are fed to

Fig. 4. Contrastive loss function Lc against the distance D(Pi, Pj). The
blue dashed line represents the loss function for positive pairs. The red solid
line is the loss function applied for negative pairs. A negative pair contributes
to the loss if its associated distance is greater than a predefined margin m.
The contrastive loss function enforces a margin between the embeddings of
the negative pairs.

the twin subnetworks to produce two vector representations
f(Pi), f(Pj) that are used to calculate a proxy distance.
The training of a Siamese network is done on a collection
of positive and negative pairs. Learning is performed by
optimizing a contrastive loss function originally proposed in
[18]. The aim is to minimize the distance between a pair of
images from the same equivalence class while maximizing the
distance between a pair of different equivalence classes. Let
us define the function D between two input images P and
S as the Euclidean distance between their embeddings in a
feature space Rd. That is, D(P, S) = ‖f(P ) − f(S)‖2. The
contrastive loss function is defined as follows;

Lc(Pi, Pj) =

{
1
2D(Pi, Pj)

2, if yij = 0
1
2 max(0,m−D(Pi, Pj))

2, if yij = 1,

where (Pi, Pj) is an input pair, yij is the target value. The
distance D(P, S) = ‖f(P )−f(S)‖2 helps pull closer together
the embeddings f(P ) and f(S) when P and S come from the
same equivalence class. The margin m > 0 determines how
far the embeddings of a negative pair are pushed apart. The
loss functions are plotted in Figure 4.

The cross-entropy loss Lce(Pi, Pj) can also be used for
optimizing Siamese networks. This loss on a set of N training
pair examples, is computed with the expression below

1

N

∑
ij

yij logD(Pi, Pj) + (1− yij) log(1−D(Pi, Pj))

where the label is yij = 0 for a pair of images (Pi, Pj)
from the same equivalence class and yij = 1 for a pair from
different equivalence classes.

B. Triplet network architecture

Inspired by [12], [16], [19], the learning of an embedding
can be approached by constructing an architecture that consists



Fig. 5. The architecture of the shared subnetwork that produces an embedding vector f(P) for an input image P. Input image P has size 150*150 pixels and
3 colour channels. Five convolutional layers with 5 × 5 filters are followed by max pooling layers with kernels 2 × 2. The output of the last convolutional
layer is flattened before being passed to two fully connected layers that output an embedding vector of dimension 128.

of three identical networks that share the same set of weights
(see Figure 3) and accepts a triplet of images as its input:
an arbitrary image, an image from the same equivalence class
and an image from a different equivalence class. In our case
each training example is a triplet of images (P a, P+, P−)
where P a is a random pattern viewed from some 3D vantage
point, P+ is the same pattern viewed from a different vantage
point and P− is a distinct pattern viewed from another random
vantage point.

Each image of the input triplet (P a, P+, P−) is mapped to
Rd by calculating the triplet (f(P a), f(P+), f(P−)) and the
Euclidean distances are calculated for the positive pair and the
negative pair. That is, D(P a

i , P
+
i ) = ‖f(P a)− f(P+)‖2 and

D(P+
i , P−

i ) = ‖f(P+)− f(P−)‖2 respectively.
Training is performed by minimizing the hinge loss func-

tion. This process ensures that the distances between positive
pairs are smaller than the distances between negative pairs
with a chosen margin m [16]. In other words, we want to
minimize the following loss function:

Lh =

N∑
i=1

max(0,m+D(P a
i , P

+
i )2 −D(P+

i , P−
i )2)

where N is the number of training triplets.
The second loss function we experimented with is the mean

squared error between the target label values and the predicted

distances:

Lm =
1

N

N∑
i=1

(D(P a
i , P

+
i )− y+)2 + (D(P+

i , P−
i )− y−)2

where y+i is the target value for the positive pair (Pi, P
+
i ) and

y−i is the target value for the negative pair (P+
i , P−

i ).

C. Shared subnetwork architecture

We chose a standard CNN architecture to generate the
embedding f(P ) of the input pattern P motivated by the
successes of this architecture in object recognition and ver-
ification [20]. The network architecture is a stack of normal-
ization layers, convolutional layers and max-pooling layers
as illustrated in Figure 5. The proposed CNN starts with
a batch normalization layer which is also applied after each
convolutional layer. The benefits of this type of layer include
regularization capabilities and increased learning speed [21].
Batch normalization is applied to each training mini-batch. Use
of batch normalization reduced the need of Dropout layers and
increase generalization capabilities of the model.

Convolutional filters work as local feature detectors while
max pooling layers make the model more robust to small
translations [22]. A deep architecture with several layers of
convolutional filters, normalization and max-pooling layers
acts as a robust local feature extractor. Kernel weights matrices
and bias vectors for convolutional layers are initialized with
Xavier uniform initializer [23] where weights are drawn from



Fig. 6. Examples of generated patterns. For the first dataset we generated seed
patterns as a set of black disks on a white square with a black background.
For the second dataset, the seed patterns were a set of black disks on white
background.

Fig. 7. Schema for triplets generation with seed patterns and transformations.
Two types of triplets are generated with equivalent pattern at the second or
at the third place for symmetry.

a uniform distribution with ranges calculated based on the
number of input and output units. All layers in the shared
CNN are followed by a rectified linear activation function.

The output of the last max pooling layer is flattened and two
fully-connected layers compute non-linear transformations on
local features to produce an embedding in a vector space of
dimension d. The distance between representation vectors is
calculated and passed to the sigmoid activation function 1

1+e−x

to restrict the output to the interval [0, 1].

IV. EXPERIMENTS

Our experiments were designed to test whether the Siamese
and Triplet network architectures are able to recognize patterns
subjected to large complex geometric transformations like
homographies.

A. Design of experiments

1) Seed patterns and transformations: Consider a collec-
tion of seed patterns P = {P1, . . . , Pn} where each image
Pi is a unique pattern of black disks on a white square as
illustrated in Figure 6. Seed images represent a canonical view
of a pattern from a camera placed in front of the pattern. When
the camera moves, the projection of the pattern on the camera
plane will be related to the canonical view by a homography.

Fig. 8. A projective transformation is completely characterized by the
mapping between the vertices of two quadrangles. In order to generate random
homographies, we start with the four vertices A, B, C, D of a square, then
randomly pick matching points in a neighbourhood of radius R to create a
quadrangle. Finally, we rotate the quadrangle by arbitrary angle ϕ.

We consider also a set of random homographic transformations
T = {T1, . . . , Tm}. Each projective transformation Tj warps
a seed pattern Pi to generate a new pattern. We say that
two images are equivalent or belong to the same equivalence
class if they are generated from the same seed pattern using
projective transformations. We will call a pair of images from
the same equivalence class a positive pair and a pair of images
from different equivalence classes a negative pair.

2) Training pairs: Siamese networks require a collection
of positive and negative pairs of images for training. A
positive pair (Tp(Pk), Tl(Pk)) consists of two different (p 6= l)
projective transformations Tp, Tl of the same seed pattern
Pk. A negative pair (Tp(Pk), Tl(Pq)) is generated from two
distinct (k 6= q) seed patterns Pk, Pq warped by two projective
transformation. A positive pair is assigned the label y = 0 and
a negative pair has the label y = 1.

3) Triplets of images: a Triplet model takes as input a
triplet of images. To generate a triplet, we randomly choose a
pattern Pk from a set of seed images P and apply a random
projective transformation Tl ∈ T to this image to obtain an
anchor image P a = Tl(Pk). Then we apply another projective
transformation Tp to the same seed image Pk to generate an
image P+ = Tp(Pk). The third image P− of a triplet is
generated by selecting a distinct (s 6= k) seed image Ps ∈ P
and applying a random projective transformation Tq ∈ T .
Images P+ and P− are swapped randomly in a triplet.

Each triplet is assigned a 2D-tuple label y that corre-
sponds to the discrete metric between patterns in a posi-
tive pair (P a, P+) and a negative pair (P+, P−). Triplet
(P a, P+, P−) is assigned the label y = (0, 1), and triplet
(P a, P−, P+) is given the label y = (1, 0) as illustrated in
Figure 7. The neural network tries to position the embeddings
of equivalent pattern images in such a way that their distance
is close to zero, whereas the embeddings of pattern images
that are not equivalent are positioned such that their distance



Fig. 9. Example of three different projective transformations with increasing deformations of a seed pattern. Small deformations are obtained with small
radius and angle of rotation. Higher values of the radius and the rotation angle generate homographies that cause more dramatic distortions to the seed pattern.

is close to one.
For the sake of completeness, we tested whether the same

network architecture is able to learn transformation equiva-
lence. Our experiments show that the network is able to learn
whether two images of patterns presented are views from the
same view point or not. To carry out the experiment, a set of
triplets (P a, P+, P−) is generated to provide a model with
information about the equivalence of transformations, where
anchor image P a is some seed pattern Pl warped by projective
transformation Tk, element P+ is a seed pattern Pp warped by
the same projection Tk and element P− is a distinct projection
Ts (k 6= s) applied to a pattern Pq .

B. Dataset generation
1) Seed patterns: Two separate datasets of seed patterns

are generated for training (2000 patterns) and validation (200
patterns). Validation set is used for tuning architectural param-
eters of a model and monitoring performance during training
to prevent overfitting. A separate test set (2000 patterns) is
created to evaluate and compare architectures and it ensures
that the performance evaluation is done on patterns that the
network has not seen during training.

Each seed pattern has the following characteristics: image
size 150×150 pixels, a central white square of size 100×100
pixels, 10 randomly placed black disks with a diameter of 5
pixels. A white square is placed at the center of the image
with a black background and 50 pixels margin around it to
allow display of a projected pattern. We also experimented
with patterns with no visible border (a set of black disks on a
white background like in Figure 6). The proposed network
architectures were able to learn the equivalence of such
patterns. Unsurprisingly, the neural networks could not learn
transformation equivalence when the patterns had a complete
white background.

We use the same number of disks in the patterns to prevent
the network from learning to count the number of disks in a
pattern to classify it. We also tested the proposed networks on
datasets with both a constant and diverse number of disks. The
results were not sensitive to the number of disks. Moreover, we
experimented with different pattern shapes including triangles
and rectangles and found out that, once trained, a network was

able to distinguish between equivalent patterns independently
of the shape of the dots.

2) Projective transformations: Separate training and vali-
dation sets of homographies were generated with 2000 and 200
transformations respectively. One of the fundamental theorems
of projective transformations [24] states that a projective
transformation Ti is completely characterized by the images
Ti(A), Ti(B), Ti(C), Ti(D) of four points A, B, C, D no
three of each are collinear.

In our experiment we selected the four vertices of a square
A = (0, 0), B = (0, 100), C = (100, 100), D = (100, 0) and
randomly moved them in a neighbourhood of radius R (see
Figure 8). The moved points are then rotated around the center
of the image by a random angle ϕ. Smaller values for radius R
and angle ϕ generate homographic transformations that cause
less deformations to seed patterns. These images are easier
to classify for the networks. Increasing radius R generates
projective transformations that apply heavier distortions to
seed patterns and are more difficult for the networks to learn.
Refer to Figure 9 for some examples.

C. Training
Siamese and Triplet network architectures are trained on

sets of images that are generated by applying projective
transformations to seed patterns. Training is performed on
saved datasets of pairs and triplets that allows fair comparison
of different architectures and loss functions on the same set
of images. Generating good training examples that present a
variety of positive and negative pairs to the network is impor-
tant. However, there should be a balance between informative
examples and swamping training with too challenging data.

Experiments show that proposed networks learn faster if
they are trained in stages. That is, when they are first trained on
easier examples and then on more difficult sets of images. We
trained networks first on a set of examples with a radius R =
15 and an angle of rotation up to ϕ = 90, then increased the
radius to R = 25 and the angle to ϕ = 180 both clockwise and
anticlockwise. To ensure a fair comparison between training
performance of Siamese and Triplet networks, the number of
pairs and triplets is calculated as follows: the total number
K of images is organized in K

2 pairs and K
3 triplets. Thus,



Fig. 10. Training plot of a Siamese network trained with a cross-entropy
loss function. Model accuracy on training set of 24,000 pairs (blue line) and
validation set of 2,400 pairs (red line) against 60 epochs. Dips in the training
curve are due to the introduction of more challenging training examples.

Fig. 11. Training plot of a Triplet network with a hinge loss function.
Model accuracy on training set of 16,000 triplets (blue line) and validation
set of 1,600 triplets (red line) over 30 epochs. A dip in a graph at epoch 21
corresponds to the introduction of more challenging training examples.

Siamese networks are trained in two stages with 24,000 pairs
in each one and Triplet networks are trained in two stages with
16,000 triplets in each one. The same number of pairs and
triplets are generated for learning transformation equivalence.

Both types of networks are trained from scratch using
Adam, an algorithm for gradient-based optimization of objec-
tive function that works well in practice [25]. Fully connected
layers use weight decay (L2 regularization) rate of 0.01 and
bias vectors are initialized to zeros. Hinge loss and contrastive
loss functions are used with a margin m = 1. The training
plots showing training and validation accuracy against epochs
for Siamese network optimized with a cross-entropy loss
function and a Triplet network with hinge loss are presented
in Figure 10 and Figure 11 respectively.

D. Results

Different network configurations have been explored. The
most suitable architecture for a shared subnetwork is presented

Fig. 12. A challenging correctly classified triplet is in the left column and
incorrectly classified triplet is in the right column. Triplets are challenging
because the angle of rotation between the anchor image and the positive
image is over 90 degrees and patterns are warped significantly.

in Figure 5. The minimum number of convolutional layers that
work out pattern equivalence has been determined empirically
and is equal to five. Convolutional layers have 5 × 5 filters,
max-pooling layers have kernel 2×2 and the embedding vector
space has dimension d = 128.

We evaluated the performance of the two network ar-
chitectures, Siamese and Triplet, trained with different loss
functions on separate test pairs and triplets. Performance is
measured using accuracy metric with a threshold of 0.5.
Triplet (P a, P+, P−) is identified correctly if a positive pair
(P a, P+) has the distance less than 0.5 and a negative pair
(P+, P−) has the distance greater or equal to 0.5. Predictions
of Siamese network on positive and negative pairs are evalu-
ated in the same way.

Architectures and loss functions comparison results are
presented in Table I. The best result is shown by a Triplet
network with a hinge loss function that demonstrates 97.14%
accuracy while a Triplet network trained with a mean squared
error loss function reaches only 89.69% on a test set of
10,000 triplets. Figure 12 shows challenging triplets from
a test set where the angle of rotation between an anchor
and a positive image is more than 90 degrees and patterns



TABLE I
ARCHITECTURE COMPARISON

Architecture Loss function # Test items Accuracy
Siamese Cross-entropy 15,000 pairs 93.06%
Siamese Contrastive 15,000 pairs 84.17%
Triplet Hinge 10,000 triplets 97.14%
Triplet Mean squared error 10,000 triplets 89.69%

are warped significantly. The example in the left column is
classified correctly while the example in the right column
was predicted incorrectly by a Triplet network trained with
a hinge loss function. Siamese architecture trained with a
cross entropy loss function performs better (93.06% accuracy)
than the one trained with a contrastive loss function (84.17%
accuracy) compared on a test set of 15,000 pairs. For the
task of learning transformation equivalence both architectures
showed accuracy over 95%.

V. CONCLUSION

Our study clearly demonstrates that Siamese and Triplet
networks are suitable network architectures for learning ho-
mographic equivalence. That is, we can train these neural
networks to predict whether the patterns in two images can
be matched by a projective transformation. This result opens
new avenues for building automatic manta rays recognizers.
In future work, we will use a foreground extraction algorithm
to create a mask of the manta. Segmentation algorithms like
GrabCut [26] can do this with minimal user interaction. A
collection of masked color images of mantas will be fed to a
Siamese or Triplet network for training. To determine whether
a new image of a manta corresponds to a known manta, we will
compute the distance of the embedding vector of the masked
version of the query image to the embedding vectors of the
known mantas. The embedding vectors of the known mantas
can be cached to speed up the search. A practical system would
return the 5 closest manta rays to the query image.

REFERENCES

[1] J. Ding, Y. Tang, W. Liu, Y. Huang, and K. Huang, “Tracking
by local structural manifold learning in a new ssir particle filter,”
Neurocomputing, vol. 161, pp. 277 – 289, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231215001769

[2] S. Reed, K. Sohn, Y. Zhang, and H. Lee, “Learning to disentangle factors
of variation with manifold interaction,” in International Conference on
Machine Learning, 2014, pp. 1431–1439.

[3] C. Town, A. Marshall, and N. Sethasathien, “Manta matcher: automated
photographic identification of manta rays using keypoint features,”
Ecology and evolution, vol. 3, no. 7, pp. 1902–1914, 2013.

[4] K. Lenc and A. Vedaldi, “Understanding image representations by
measuring their equivariance and equivalence,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.

[5] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” CoRR, vol. abs/1506.02025, 2015.
[Online]. Available: http://arxiv.org/abs/1506.02025

[6] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1. IEEE, 2005, pp. 539–546.

[7] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning for
face verification in the wild,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 1875–1882.

[8] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in BMVC, vol. 1, no. 3, 2015, p. 6.

[9] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–
823.

[10] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face rep-
resentation by joint identification-verification,” in Advances in neural
information processing systems, 2014, pp. 1988–1996.

[11] J.-C. Chen, V. M. Patel, and R. Chellappa, “Unconstrained face veri-
fication using deep cnn features,” in Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on. IEEE, 2016, pp. 1–9.

[12] B. Kumar, G. Carneiro, I. Reid et al., “Learning local image descriptors
with deep siamese and triplet convolutional networks by minimising
global loss functions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 5385–5394.

[13] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
Conference on Computer Vision. Springer, 2016, pp. 850–865.

[14] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2,
2015.

[15] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image re-
trieval: Learning global representations for image search,” arXiv preprint
arXiv:1604.01325, 2016.

[16] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning fine-grained image similarity with deep ranking,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1386–1393.

[17] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based cnn with improved triplet
loss function,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 1335–1344.

[18] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Computer vision and pattern recog-
nition, 2006 IEEE computer society conference on, vol. 2. IEEE, 2006,
pp. 1735–1742.

[19] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
arXiv preprint arXiv:1412.6622, 2014.

[20] G. E. Hinton, “Learning multiple layers of representation,” Trends in
cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 249–256.

[24] P. S. Modenov and A. Parkhomenko, Projective Transformations: Geo-
metric Transformations. Academic Press, 2014.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: Interactive
foreground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015720


