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Robust Re-identification of Manta Rays from
Natural Markings by Learning Pose Invariant

Embeddings
Olga Moskvyak, Frederic Maire, Asia O. Armstrong, Feras Dayoub and Mahsa Baktashmotlagh

Abstract—Visual identification of individual animals that bear
unique natural body markings is an important task in wildlife
conservation. The photo databases of animal markings grow
larger and each new observation has to be matched against
thousands of images. Existing photo-identification solutions have
constraints on image quality and appearance of the pattern of
interest in the image. These constraints limit the use of photos
from citizen scientists. We present a novel system for visual re-
identification based on unique natural markings that is robust
to occlusions, viewpoint and illumination changes. We adapt
methods developed for face re-identification and implement a
deep convolutional neural network (CNN) to learn embeddings
for images of natural markings. The distance between the learned
embedding points provides a dissimilarity measure between the
corresponding input images. The network is optimized using the
triplet loss function and the online semi-hard triplet mining
strategy. The proposed re-identification method is generic and
not species specific. We evaluate the proposed system on image
databases of manta ray belly patterns and humpback whale
flukes. To be of practical value and adopted by marine biologists,
a re-identification system needs to have a top-10 accuracy of
at least 95%. The proposed system achieves this performance
standard.

I. INTRODUCTION

RE-IDENTIFICATION of animal individuals by unique
natural markings in photo databases is an effective and

non-invasive mark-recapture tool for monitoring populations
[1]. Tracking population dynamics of animals such as manta
rays is critical owing to their vulnerable conservation status,
and economic importance in both ecotourism and fisheries [2].
These species cannot sustain heavy exploitation [3], and the
trade of manta ray gill rakers is believed to be responsible for
driving population declines upwards of 80% in some locations
[4]. Some species such as humpback whales are no longer
threatened by commercial whaling. The conservation effort
is now focused on the identification of individual humpback
whales to better understand their use of breeding and feeding
areas [5].

Our research is focused on developing an automated system
for visual re-identification of animals that bear unique natural
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Fig. 1. The proposed system learns embeddings for images from the
database. The embeddings of the same individual are brought close together
and embeddings of different manta rays are pushed further apart. A new
query image is matched to the database by finding the closest points in the
embedding space. The system learns embeddings that are invariant to viewing
angle and illumination. Photo credit: Chris Garraway.

markings. We demonstrate the suitability of the proposed sys-
tem on photo databases of manta ray belly patterns and hump-
back whale flukes. Manta rays have a unique spot pattern on
their ventral surface that allows individuals to be distinguished
from one another. The spot pattern is conserved throughout the
animals life, much like a human fingerprint. Examples of spot
patterns are shown in Fig. 1 and Fig. 2. Humpback whales
have patterns of black and white pigmentation and scars on
the underside of their tails that are unique to each whale.

There are a number of factors that make animal re-
identification based on natural markings challenging. Photo
databases often rely on input from citizen scientists to fill in
data gaps when researchers are not in the field. This means
image quality cannot be guaranteed as camera parameters, and
the angle of image capture vary. Other factors include poor
visibility (especially for underwater images), illumination, and
small objects occluding the pattern on the animal.

The current state-of-the-art manta ray recognition system
Manta Matcher [6] requires the user to manually align and
normalize the 2D orientation of the manta ray within the
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Fig. 2. The camera angle can vary dramatically. Here the same manta ray,
named Eris, was photographed from two different viewpoints. A homography
transformation is required to align the belly patterns of the two images. Photo
credit: Chris Garraway.

image, and select a rectangular region of interest containing
the spot pattern. The Manta Matcher works best with photos
taken perpendicular to the manta’s ventral pattern with no
reflective particles in the water and in good lighting conditions.
In practice, these constraints limit the use of photos from
citizen scientists and some marine biologists still do the identi-
fication manually using a handcrafted decision tree. A common
idea that has been applied to several species for recognizing
individual animals is to search for an affine transformation
matching patterns present in two distinct images (lizards [7],
arthropods [8], sharks [9], turtles [10]). However, this approach
requires annotating body landmarks on each individual image
in the same order. This is not suitable for manta rays as we
want to accept images of the animals in a wide range of
poses with no requirement that all body landmarks are clearly
visible.

Convolutional neural networks (CNN) have been applied to
the problem of animal identification as a classification problem
[11], [12], [13], [14]. It means that the trained model is only
able to identify the animals presented during training.

It is highly desirable to have a system that is not only
capable of recognizing animals whose images have been used
to train the neural network, but also capable of recognizing
animals whose images have been added to the database well
after the network has been trained without requiring the re-
training of the network on these new instances. This paper
focuses on this more challenging and less studied problem for
animal re-identification.

In this work we focus on eliminating some constraints of
previous wildlife matching systems such as requirements for
high image quality and a clear view of the animal markings
in the image. We propose a solution inspired by advances in
deep learning for face re-identification. Our approach uses a
CNN to learn embeddings for images of animal markings in
such a way that the distance between embeddings of the same
individual is smaller than the distance between embeddings of
this individual and other animals (see Fig. 1).

The main contribution of this work is a novel visual wildlife
re-identification system with the following properties:

1) robustness to viewpoint changes, small occlusions and
lighting conditions, and therefore ability to match im-
ages from citizen scientists;

2) re-identification of individuals never seen during train-
ing.

The paper is organized as follows: in Section II we discuss
related work on re-identification. Our approach to learning
embeddings is described in Section III. The experimental setup
and results are presented in Section IV.

II. RELATED WORK

The techniques that have been proposed for photo-
identification of animal natural markings vary in the core
methods used, amount of user involvement and ability to
be adapted to different species.We review solutions used in
practice for different cases.

Matching natural patterns has been approached by exhaus-
tively generating two-dimensional affine transformations based
on user provided key points and comparing each transforma-
tion of a candidate example with the examples stored in a
repository [7], [8], [9], [10]. The algorithm was implemented
in a solution called APHIS (Automated Photo-Identification
Suite) and applied for re-identification of lizards [7], arthro-
pods [8], spotted raggedtooth sharks [9] and turtle flippers
[10]. However, the method requires a user to select key points
and identify the most distinctive spots for each image.

Some methods have been developed for specific species and,
while performing well on these, are not easily transferable
to other species. High-contrast colour patterns of humpback
whale flukes [15] and dolphin dorsal fins [16] are matched by
extracting hand-crafted features from corresponding segments
obtained by overlaying a grid on a region of interest. This
method is not robust to viewpoint changes.

Another approach identifies individual cetaceans from im-
ages showing the trailing edge of their fins by generating a
representation of integral curvature of the nicks and notches
along the trailing edge [17].

Current systems used in practice (Manta Matcher [6],
HotSpotter [18]) are based on automated extraction and match-
ing of keypoint features using the Scale-Invariant Feature
Transform (SIFT) algorithm [19] with different modifications
and enhancements to work on specific cases. While the algo-
rithm works well on images that clearly show the pattern of
interest, it is not robust to large changes in camera viewpoint,
occlusions and variations in illumination.

The task of animal visual re-identification is related to the
face recognition problem that has been extensively studied
with deep learning in recent years [20]–[22]. The main idea
is learning a function using a CNN that maps from a face
image space to a space of a smaller dimension where the
distance between the learned embedding vectors corresponds
to a face similarity measure [20], [23]. The network is trained
on labelled image pairs or triplets to learn a face similarity
measure under which the distance between the embeddings of
faces from the same person is reduced as much as possible and
that of the distance between embeddings of faces of different
people is increased. The problem is then reduced to the nearest
neighbours search problem in Euclidean space, which can
be solved by efficient approximate nearest neighbours search
algorithms [24].

The difference between face verification and animal re-
identification is that a face image is typically normalized to
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Fig. 3. System architecture. All images from the current database are passed through the trained CNN model to compute embeddings and fit a nearest
neighbors classifier in an embedding space. At the prediction step, k predictions are obtained by computing an embedding using trained CNN and finding the
closest points from the database using the nearest neighbors classifier.

an upright position whereas a pattern on an animal body is
not necessarily in a canonical position and can appear at
different angles. See an example of the same manta ray viewed
from different vantage points in Fig. 2. A robust identification
system should be invariant to the pose of the object of interest
and viewing angle. In our previous work [25], we investigated
the difficulty of recognizing a set of artificially generated
patterns subjected to various projective transformations to
simulate the variations in appearance of natural markings from
different vantage points. This previous study explored Siamese
[23] and Triplet [24] architectures with different loss functions
for learning the homographic equivalence between patterns. It
was concluded that these architectures with a relatively simple
CNN in its core were suitable for pattern re-identification.
The results were promising and we have now extended this
approach to real images of animal markings in the wild.

III. LEARNING EMBEDDINGS

Throughout the paper, we say that images from the same
individual animal belong to the same class. Images of different
individual animals are said to be from different classes. The
re-identification task can be formulated as a classification
problem where the number of classes is in the order of
thousands and not known in advance, and the number of
examples for each class is small. The following section gives
an overview of the architecture of our re-identification system.

A. System architecture

The system, illustrated in Fig. 3, consists of a CNN that
produces embeddings for images and a k-nearest neighbors
classifier in the embedding space. During the learning phase,
we train a CNN on a database of labelled images. During the
prediction phase, a new query image is fed to the network to
produce an embedding. The first k animals in the embedding

database that are closest to the embedding of the query image
are returned. Two outcomes are possible during the verification
of the identity of the animals. Either the marine biologist
confirmes that the query image corresponds to one of the k
returned animals or the query image is considered to be from
a never seen before animal. In the first case, the query image
is added to the record of the recognized animal. In the second
case, a new animal entry is created. Over time, new images
are added to the database but the CNN is not systematically
retrained on the extended dataset. The network is able to match
against images that were in the database during training as well
as against images added later.

B. Model

We have adapted a model proposed in FaceNet [21] that
learns embeddings for faces by minimizing a triplet loss.
Initially, it was claimed that representation learning with the
triplet loss is inferior to a combination of classification and
verification losses [26], [27]. However, modifications of the
triplet loss (angular loss [28], magnet loss [29]) and smart
triplet mining strategies (semi-hard [21], batch-hard [30], [31])
has proved that a model can successfully learn an end-to-end
mapping between images and an embedding space.

The model consists of convolutional layers to extract fea-
tures from an input image, a global pooling layer over feature
maps and a fully connected layer to produce an embedding
vector. We compare different CNN architectures as a base
network, see details in Section IV-B3. The convolutional layers
output a 3D array (e.g. 8 × 8 × 512) that is then passed to a
global pooling layer.

A global pooling layer takes the average of each feature map
along the spatial axes (e.g. a tensor 8×8×512 is transformed
into a tensor 1 × 512). We follow FaceNet [21] and favor a
global average pooling layer instead of a fully connected layer
after convolutional layers. The global pooling layer makes
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Fig. 4. Examples of a hard triplet, a semi-hard triplet and an easy triplet of
embeddings. Anchor embedding a, its closest positive point p (same class as
a) and the red negative n (different class from a) form a hard triplet as the
negative is closer to the anchor than the positive example. The triplet (a, p, n′)
is a semi-hard triplet as the orange negative n′ lies within the margin from the
positive. The triplet contributes a positive value to the loss function. Whereas
the triplet (a, p, n′′) with the green negative n′′ is an easy triplet because it
contributes zero to the loss function.

the output of the network invariant to the size of the input
images. Moreover, as the layer has no parameters, overfitting
is avoided [32]. The layer sums out the spatial information so
it is more robust to spatial transformations of its input. Pooled
features maps are passed to a fully connected layer to produce
an embedding vector.

C. Loss function

Our model is optimized using the triplet loss function
[24] which accepts triplets of images. Let us define a triplet
(Ia, I+, I−) where an image Ia (anchor) and an image I+

(positive) are from the same class and an image I− (negative)
is from a different class. The function D between two input
images I and J is defined as the Euclidean distance between
their embeddings f(I) and f(J). That is, D(I, J)

def
= ‖f(I)−

f(J)‖2
The triplet loss function L encourages the squared distances

between positive pairs of embeddings to become smaller than
the squared distances between negative pairs of embeddings
by a given margin m:

L def
=

N∑
i=1

max(0,m+D(Iai , I
+
i )2 −D(I+i , I

−
i )2) (1)

where N is the number of training triplets.
We also did experiments with the Siamese network archi-

tecture [23] and a contrastive loss function [33] over randomly
generated pairs, however, the results were not as good as the
results obtained with the triplet loss function.

D. Example mining

The strategy for selecting triplets for learning embeddings
plays an equal or more important role than the loss [34].

Generating random triplets for training with the triplet loss
would result in many triplets that are already in a correct
position and contribute zero loss to (1). Several strategies
have been proposed to optimize training with the triplet loss
function. Batch-hard triplet mining [30] selects the hardest
positive (the furthest example from the same class) and the
hardest negative (the closest example from a different class)
within a batch for each anchor image. Another technique,
distance-weighted sampling [34], selects a negative example
with a probability function of the distance to the negative
example.

We follow the semi-hard triplet mining strategy proposed
by [21] as we found experimentally that this approach works
better than batch-hard strategy for our application domain.
The triplet loss is calculated over triplets that contribute
positive value to the loss function. In other words, these
negative examples lie within a margin from the positive
examples (see Fig. 4). The selected triplets are not necessarily
the hardest within a batch but they violate the constraint
D(Iai , I

+
i )2 +m < D(Iai , I

−
i )2.

The triplet mining strategies listed above require computing
embeddings in order to select triplets. This can be achieved
by precomputing embeddings every n steps using the most
recent network checkpoint. We adopt a more computationally
efficient online mining strategy [21] where triplets are gener-
ated on the fly after the embeddings have been computed and
before the evaluation of loss function and backpropagation
phase.

E. Evaluation methodology

We evaluate the performance of the system by computing
the following metrics:

• true positive rate on pairs from the test set;
• top-k accuracy on the test set (k = 1, 5, 10).
1) Validation on pairs: The network performance is eval-

uated on pairs generated from the test set using a method
proposed in [21]. The set of pairs of images from a same
class is denoted as P+ and the set of all pairs from different
classes is denoted as P−. Let us define the set of true accepts
TA for a threshold d as the set of correctly classified positive
pairs with a threshold d:

TA(d)
def
= {(i, j) ∈ P+, withD(Ii, Ij) ≤ d}.

The set of false accepts FA is defined as the set of negative
pairs that are incorrectly classified as positive with a threshold
d:

FA(d)
def
= {(i, j) ∈ P−, withD(Ii, Ij) ≤ d}.

We calculate the true positive rate TPR (or recall) and the
false acceptance rate FAR for a given threshold d as:

TPR(d) def
=
|TA(d)|
|P+|

, FAR(d) def
=
|FA(d)|
|P−|

Thanks to the relatively small size of the test datasets, all
possible pairs are generated. The models are evaluated by
plotting ROC curves and computing the area under the curve.
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(a) Images of acceptable quality (b) Images excluded from the dataset

Fig. 5. Not all images of manta rays are acceptable for training and testing the system. An image is accepted if the belly pattern is visible (even at oblique
angles and in muddy water), see examples in (a). We accept more challenging images than other methods [6]. Examples of excluded images in (b): back of
the manta, side view, poor underwater visibility. Photo credit: Lydie Couturier.

Fig. 6. The user is required to draw a bounding box around the region
containing the natural markings. Images are cropped to contain the pattern
of interest only. This is the only input required from the user. Photo credit:
Chris Garraway.

The models are compared with respect to the true positive
rate TPR at the threshold d when the false acceptance rate
FAR = 0.01.

2) Accuracy evaluation on the test set: From a marine
biologist’s point of view, a reliable system should have at
least 95% top-10 accuracy. The accuracy of re-identification
depends on the number of matching images in the database
for each query image. We consider a realistic scenario where
each query individual has two matching images in the database
(our databases have at least 3 images for each individual). If
there are more images per individual in the database, the task
of re-identification becomes easier. For training, the dataset
is partitioned into a training set and a test set in such a way
so each individual animal appears exclusively either in the
training set or in the test set. For testing, the database is made
of the training set images plus m = 2 random images for
each test individual. The rest of test images are used as query
images. The accuracy is averaged over all test individuals in

multiple runs by moving different images from the test set to
the database. We also analyze the effect of varying the number
m in Section IV-C6. A similar evaluation procedure has been
performed in [6], [18] on different datasets.

IV. EXPERIMENTS

A. Datasets

1) Manta ray belly patterns: The experiments have been
conducted on a dataset of manta ray images from Project
Manta (a multidisciplinary research program based at the
University of Queensland, Brisbane, Australia). Images have
been manually checked to select the ones that show a pattern
on a belly with enough clarity to be recognized by a human.
See some examples in Fig. 5 (left). The dataset is challenging
as it contains photos of the patterns taken at oblique angles,
in a muddy water or with some small occlusions (small fish,
water bubbles). Uninformative images such as the view of
the back of a manta, partial views or unclear patterns have
been removed from the dataset. See examples in Fig. 5 (right).
Each image has been manually annotated with a bounding box
around the pattern. Then, each image has been cropped to the
area inside the bounding box (Fig. 6). Manually highlighting
the belly pattern region is the only input required from the
user in our application.

The resulting dataset (see details in Table I) is partitioned
into the training set (96 individuals) and the test set (24
individuals).

2) Humpback whale flukes: The dataset of humpback
whales flukes comes from the Happy Whale organization
(happywhale.com) [35], [36]. The main challenge with this
dataset is the small number of images per whale with two-
thirds of the whales having one or two sightings. For training
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Fig. 7. Images from the whale dataset. Each row shows three images of the
same fluke. List of photo credits is provided in acknowledgment.

TABLE I
STATISTICS FOR THE DATASETS

Manta rays Whales

Stats Dataset One fold Dataset One fold

Number of images 1730 ∼350 2908 ∼550

Number of individuals 120 24 633 126

Average # images per ind. 14 5

Min # images per ind. 6 3

and testing purposes we select individuals with a minimum
of three images per whale resulting in a set of 2908 images
for 633 unique whales, see Table I. Most of the images have
already been cropped to include only the image of the fluke
(see example images in Fig. 7), however there are some
noisy examples where the fluke is shown in the distance or
text information appears at the bottom. We did not do any
cropping, although this may further improve the results.

The challenges encountered with the whale dataset are dif-
ferent from those of the manta ray dataset. Although there is no
large variation in pose or viewpoint, there is a limited number
of examples per individual, a combination of black-and-white
and colour images, a variety of illumination conditions and
some noisy images.

B. Implementation details

1) Batch generation: Training is performed on batches of
B

def
= P × K images, where P is a number of distinct

classes in the batch and K is a number of examples per
class. During training, the whole batch is fed into the network
and embeddings for the batch are computed. Embeddings
are then combined into triplets based on pairwise distances
according to the semi-hard triplet selection strategy discussed
in Section III-D. We use batches of 15 classes with 5 images
per class for manta rays and 3 images per class for whales as
this is the maximum batch size that fits into the memory of
the computer utilized in these experiments.

2) Data augmentation: Data augmentation is used exten-
sively during training to increase the variety in the training set.
Transformations are applied on the fly so that at every epoch
the network receives a new augmentation of the image. For
the manta ray dataset the following geometric transformations

TABLE II
PERFORMANCE OF Inception-Ft MODEL ON HUMPBACK WHALES AND

MANTA RAYS DATASETS SEPARATELY (METRICS ARE AVERAGED OVER 5
SPLITS)

Dataset

Metrics Humpback whales Manta rays

Top-1 62.78%±1.64 62.05%±3.24

Top-5 88.20%±0.67 93.65%±1.83

Top-10 93.46%±0.63 97.03%±1.11

TPR 73% 71%

AUC 0.980 0.966

were used: rotation up to 90 degrees, horizontal and vertical
flips, small shifts up to 10 pixels and zooming in to 10 percent.
Most of the whale images have already a normalized view of
the fluke upright. Therefore, only small rotation angles are
used in data augmentation for whales.

3) Base networks: We compare convolutional layers of
InceptionV3 [37] and MobileNetV2 [38] as feature extractors
to assess the influence of the CNN architecture on the per-
formance of the system. One of the key differences between
these two models is the number of parameters and operations.
The smaller MobileNetV2 has 3.4 million parameters and 300
million multiply-adds operations [37]. The bigger InceptionV3
has 23 million parameters and 5 billion multiply-adds per
inference [37]. The convolutional layers of both networks have
been initialized with weights pretrained on Imagenet [39].

The input size of the network depends on the case study: the
input images of whale flukes are resized to 224×448 because
of the shape of the region of interest; the input images for
manta ray pattern are of shape 300 × 300 for InceptionV3
and 224 × 224 for MobileNetV2 (pretrained weights for
MobileNetV2 are available only for some input sizes). Images
are preprocessed the same way as it was done for the model
used for fine-tuning (pixel values are scaled from [0,255] to
[-1,1]).

4) Training: The Adam optimizer [40] is used for all ex-
periments with a learning rate 10−5 and other hyperparameters
with default values (β1 = 0.9, β2 = 0.999). We used a learning
rate 10−5 because higher values did not work well with the
pretrained weights (the same has been observed in [30] while
training the pretrained network with the triplet loss).

In order to produce an accurate evaluation of the perfor-
mance of the network, we perform k-fold cross-validation
for the first experiment (Section IV-C1). All splits are done
with respect to individuals so each individual appears only in
training or test split. Each dataset is split in five parts and five
rounds of training are completed with four folds allocated for
training and one fold for testing.

All experiments have been run on a cluster with two Tesla
M40 24GB GPUs and 6 CPUs.

C. Performance evaluation

1) Fine-tuning InceptionV3 based model: We fine-tune
models with InceptionV3 convolutional layers, a global pool-
ing layer and a fully connected layer with 256 outputs on each
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Fig. 8. Top-k accuracy over 5 splits on manta ray patterns with Inception-Ft
configuration.
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Fig. 9. Top-k accuracy significantly increases at the second prediction for all
configurations.

dataset separately. We name this configuration Inception-Ft
(fine-tuned).

The metrics TPR and AUC are calculated over all possible
pairs for the test fold when FAR = 0.01 (around 45,000
pairs for manta rays with approximately 2,000 positive pairs
depending on the split; around 180,000 pairs with approxi-
mately 1,800 positive for the whales dataset). Top-k accuracy
is computed for the query set where there are two matching
images in the database for each query pattern. We also
explore how the accuracy changes depending on the number
of matches present in the database in Section IV-C6.

The results of training over five splits on the manta ray
dataset show that accuracy does not vary significantly over
the splits, see Fig. 8. The top-1 accuracy is 62% for both
datasets and the top-10 accuracy is 93% for humpback whales
and 97% for manta rays (Table II). Moreover, the graph in
Fig. 9 shows that the top-k accuracy increases sharply at the
second prediction (k = 2) and top-3 accuracy is over 90% for
Inception-Ft configuration.

We cannot make a meaningful comparison with previous
works as the results have been reported on different datasets
and the source code is not publicly available. Manta Matcher
[6] demonstrates 50.97% top-1 and 67.64% top-10 accuracy

TABLE III
THE LARGER MODEL BASED ON INCEPTIONV3 DEMONSTRATES BETTER
PERFORMANCE THAN THE SMALLER MODEL BASED ON MOBILENETV2

Base network

Metrics MobileNetV2 InceptionV3

Top-1 52.06%±4.77 64.18%±4.55

Top-5 89.18%±1.85 95.65%±1.15

Top-10 95.47%±1.40 97.78%±0.62

TPR 60% 73%

AUC 0.970 0.983

TABLE IV
NOT NORMALIZED EMBEDDINGS PERFORMS BETTER THAN

l2-NORMALIZED

Embeddings

Metrics l2-normalized Not normalized

Top-1 48.72%±4.06 64.18%±4.55

Top-5 88.50%±1.62 95.65%±1.15

Top-10 91.57%±1.75 97.78%±0.62

TPR 61% 73%

AUC 0.959 0.983

on a dataset of 720 images of 265 different manta rays.
We think that our dataset is more challenging as it contains
images taken from a wider variety of angles and illumination
conditions (Fig. 5a). The best results to our knowledge for re-
identification of humpback whale flukes have been reported
in [17]. The top-1 accuracy of 80% has been achieved on a
dataset of a similar size. However, the method is using integral
curvature representation of the trailing edge of the flukes and
is specifically designed for humpback whales. Our method is
generic and not specialized for a particular species.

For the rest of the experiments we change one hyperparam-
eter to evaluate its effect and all other parameters are kept
unchanged; the experiments are performed on one split of
manta ray dataset.

2) Influence of the base network: We evaluate the effect
of the model architecture by training two networks with
convolutional layers from InceptionV3 and MobileNetV2. The
larger model InceptionV3 demonstrates better performance in
both validation on pairs (TPR 73% vs 60%) and top-k accuracy

TABLE V
ACCURACY IS NOT SENSITIVE TO THE DIMENSION OF THE EMBEDDING

SPACE

Embedding length

Metrics 128 256 512

Top-1 64.46%±3.40 64.18%±4.55 65.75%±4.80

Top-5 95.33%±1.08 95.65%±1.15 94.67%±1.61

Top-10 97.76%±0.90 97.78%±0.62 97.47%±0.72

TPR 72% 73% 70%

AUC 0.983 0.983 0.980
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TABLE VI
EXTENSIVE AUGMENTATION (ROTATIONS UP TO 360◦ AND FLIPS) OF
INPUT IMAGES IMPROVE PERFORMANCE COMPARED TO ONLY SMALL

AMOUNT OF AUGMENTATION (ROTATIONS UP TO 10◦)

Augmentation

Metrics Small augmentation Extensive augmentation

Top-1 54.00%±3.32 64.18%±4.55

Top-5 92.03%±1.62 95.65%±1.15

Top-10 95.09%±1.28 97.78%±0.62

TPR 58% 73%

AUC 0.970 0.983
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Fig. 10. Accuracy of re-identification depending on the number of matching
examples per query individual in the database.

(top-1 accuracy 64% vs 52%), see Table III. However, the
difference in performance decreases for higher k and top-10
accuracy is 97% for Inception based and 95% for MobileNet
based networks. The advantage of MobileNetV2 is a slightly
faster execution but our system does not have to work in
real-time. The rest of the experiments are continued with
InceptionV3 convolutional layers.

3) Effect of embedding normalization: FaceNet architecture
[21] uses l2-normalization whereas Hermans et al. [30] argue
that forcing the norm of the embedding to 1 does not improve
performance. Our experiments demonstrate that restricting the
embedding space to a hypersphere decreases the accuracy and
metrics for verification on pairs. For example, top-1 accuracy
drops from 64% to 48% when we apply l2-normalization, TPR
decreases from 73% to 61% see Table IV. Therefore, the rest
of the experiments was done without l2-normalization.

4) Influence of embedding dimension: We tested three
values for the dimension of the embedding space, 128, 256 and
512. Averaged results are reported in Table V. The difference
between achieved accuracy is statistically insignificant and we
select dimension of 256 for all other experiments. Experi-
ments with smaller embedding spaces (dimensions 32 and 64)
showed inferior performance compared to higher dimensional
spaces.

5) Effect of data augmentation: We have investigated the
effect of data augmentation on the manta ray dataset. The
pattern on a manta ray belly may appear at different angles so

extensive data augmentation including full rotations and flips
has been applied to Inception-Ft model. We train the same
model with rotations to only 10 degrees and no flips to estimate
the influence of data augmentation on the performance.

The experiment shows (Table VI) that the performance
results of the tested model are lower when less augmentation
is applied during training: top-1 accuracy drops significantly,
54% vs 64%, and TPR has dropped to 58% compared to 73%.
This demonstrates that rotations and flips of training examples
facilitate learning of pattern invariance to rotations. However,
the difference in top-5 and top-10 accuracy is less marked.

6) Number of matching individuals in the database: Previ-
ous experiments in this paper have been conducted under the
condition that there are two matching images for each query
individual in the database. This experiment compares accuracy
for a different number of matching individuals (from one to
five), see Fig. 10. The fewer images in the database for each
query individual, the more difficult it is for the network to
find the right match. The number of matching examples for
an individual in the database is more important for top-1 than
for top-5 or top-10 accuracy. Top-1 accuracy is around 45% for
only one matching image, it increases to 64% for two matches
and reaches 81% when there are five images in the database
for each individual. Top-10 accuracy reaches 98% with at least
three images per individual in the database which is beneficial
for the practical application.

7) Visualization of predictions: Fig. 11 shows three query
images and top-5 predictions of the system. All predictions
share visual similarity with a query image. Three examples
of incorrect matches alongside with top-3 predictions and two
matching examples from the database are shown in Fig. 12.
These examples are challenging as the pattern is only partly
visible because of the oblique angle.

We analyze the learned representation with t-SNE [41]. The
t-SNE algorithm maps a high dimensional space into a two-
dimensional while preserving the similarity between points.
The t-SNE plot for the manta ray test set (see Fig. 13) shows
examples where embeddings for the same manta ray (manta
Telluno, manta Priapus) are clustered together even when the
viewpoint is different and small occlusions are present (water
bubbles, small fish). Embeddings are less separated for the
less distinguishable markings where a pattern consists of a
small number of black marks placed sparsely (manta Paw
Paw and manta Nova; manta Kimba and manta Cousteau).
On the t-SNE plot for the humpback whales test set (see
Fig. 14) we observe that individuals are clustered together
even when the fluke is visible from different distances (whale
120). The system is invariant to the pose of the fluke (whale
101, whale 21) and viewpoint position (whale 25). The mix
between whales occurs for some totally black flukes (whales
136, 12, 72) or for the flukes with a similar colour pattern
(whale 61 and whale 21).

V. CONCLUSION

We have presented a novel visual re-identification system for
manta rays that is robust to viewpoint changes, variations in
lighting and small occlusions. The results have been achieved
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Fig. 11. Three examples of correct predictions. All closest predictions share visual similarity to the query image. The pattern is correctly matched even
for examples with a challenging viewpoint and illumination. Photo credits: Fabrice Jaine, Linda Earthwatch, John Lawson, Chris Garraway, Chris Garraway,
Chris Kim, Maggie McNeil, Chris Garraway, Rebecca Fonskov, Kathy Townsend, Chris Dudgeon, Chris Garraway, Sarah Williamson, Ryan Jeffery, Amelia
Armstrong, Ryan Jeffery, Josh Gransbury, Chris Garraway.

Fig. 12. Three examples of incorrect matching (no match within ten closest predictions). Two images on the right are the only matching examples for each
query image in the database. The query images are difficult because of the oblique angle that limits the visibility of the whole pattern. Top-3 predictions share
some visual similarity to the query image. Photo credits: John Gransbury, Ian Christie, Amelia Armstrong, Mark Gray, Kathy Townsend, Kathy Townsend,
Graeme Haas, Gerard Smith, Amelia Armstrong, Fabrice Jaine, Michael Rowett, Mounties Earthwatch, Mark Atkinson, Lydie Couturier, Chris Garraway,
Kathy Townsend, Chris Garraway, Deg Ed.
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Fig. 13. Visualization of embeddings computed for the manta ray test set (best viewed in colour) using t-SNE [41]. Embeddings for manta Telluno and manta
Priapus form tight clusters and show that the learned representation is invariant to rotations, a viewing angle and small occlusions. Mixing between classes
happens when the pattern has several sparse dots (manta Paw Paw and manta Nova; manta Kimba and manta Cousteau). Photo credits (in a clockwise order
starting from manta Kimba: Steward Barry, Mark Gray, Fabrice Jaine, Nigel Marsh, Kathy Townsend, Lydie Couturier, Chris Garraway, Chris Garraway, Chris
Garraway, Matt Prunty.

by using a combination of InceptionV3 model, the semi-
hard triplet mining strategy, the triplet loss function and an
extensive geometric augmentation of the input images. The
practical value of the system been demonstrated on a manta
ray dataset and an humpback whale dataset. The system
requires the user to localize the region of interest by drawing
a bounding box around it.

In the future, we plan to further improve the system by
automating the localization of the patterns of interest. One
possible stategy is to train the network on auxiliary tasks like
learning to predict the locations of specific body landmarks
(tip of the wings and gills of manta rays, fluke tips and notch
for whales). This would force the network to learn about the

morphology of the animal. This ability should help induce a
better representation of the spatial position of the pattern with
respect to the body.
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