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Abstract

Re-identification of individual animals in images can be

ambiguous due to subtle variations in body markings be-

tween different individuals and no constraints on the poses

of animals in the wild. Person re-identification is a simi-

lar task and it has been approached with a deep convolu-

tional neural network (CNN) that learns discriminative em-

beddings for images of people. However, learning discrimi-

native features for an individual animal is more challenging

than for a person’s appearance due to the relatively small

size of ecological datasets compared to labelled datasets

of person’s identities. We propose to improve embedding

learning by exploiting body landmarks information explic-

itly. Body landmarks are provided to the input of a CNN

as confidence heatmaps that can be obtained from a sepa-

rate body landmark predictor. The model is encouraged to

use heatmaps by learning an auxiliary task of reconstruct-

ing input heatmaps. Body landmarks guide a feature ex-

traction network to learn the representation of a distinctive

pattern and its position on the body. We evaluate the pro-

posed method on a large synthetic dataset and a small real

dataset. Our method outperforms the same model without

body landmarks input by 26% and 18% on the synthetic and

the real datasets respectively. The method is robust to noise

in input coordinates and can tolerate an error in coordi-

nates up to 10% of the image size.

1. Introduction

Animal re-identification in images is an instance level

recognition and retrieval problem which aims to distinguish

between individual animals and find matching examples in

Figure 1. (a) The spot pattern on these two different manta rays is

the same (consists of one black dot). (b) Localised images of the

spot pattern are ambiguous. (c) To distinguish between individuals

like these we propose to exploit body landmark coordinates (e.g.,

eyes, gills, a tail) in the re-identification system. Photo credit:

David Biddulph, John Gransbury.

an image database. Individual animals can be told apart by

subtle variations in natural markings on their body such as

belly patterns on manta rays, stripes on tigers and zebras.

Automatic re-identification of animals in photos is of

high importance for wildlife monitoring and conservation

because it is less time consuming than manual visual in-

spection and more efficient than collecting biology samples

or attaching and tracking microchips [14].

The task is similar to person recognition that has been

approached with deep convolutional neural networks [8]. A
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Figure 2. Architecture of our Landmark-Id model. The novel features are additional heatmap input and heatmap reconstruction block. GAP

is global average pooling of feature maps.

network learns embeddings for images of people’s appear-

ances in such a way that the distance between embeddings

of the same person is smaller than the distance between em-

beddings of different people. However, visual animal re-

identification is mainly based on body markings which are

more ambiguous than a person’s appearance because of the

similarities among different individuals. For example, dif-

ferent manta rays can have a very similar spot pattern but

located at different positions on the belly. Figure 1 shows

two manta rays with only one black dot on the belly and the

only difference is the location of the spot with respect to the

landmarks (e.g., eyes, a base of the tail and gills).

There are limitations in transferring face and person re-

identification methods to images of animals:

• faces are usually normalised to an upright frontal pose

thanks to robust methods to detect facial landmarks

and body postures are aligned vertically;

• warping to a canonical position or alignment is not

always possible for animals due to the sensitivity of

these methods to errors in coordinates of body land-

marks;

• wildlife datasets have limited data compared to large

public datasets for face and person re-identification so

there is less chance to learn the relation between the

body landmarks and unique markings from the data it-

self.

Previous work on the manta ray re-identification sys-

tem [15] uses cropped images of spot patterns to focus the

model’s attention on the pattern itself and avoid distraction

from the background. However, the cropped patch of a sport

pattern loses information about its relative position on the

body so it is not likely to correctly identify individuals with

similar patterns that differ only in a position like in Figure 1.

We build on a strong model for person re-identification

[13] and propose to improve embedding learning for animal

re-identification by adding locations of body landmarks to

the model input. The new model explicitly receives infor-

mation about the position of distinctive features with respect

to the body. The motivation of using body landmarks is the

scarcity of annotated datasets with animal identities com-

pared to large labelled datasets for person re-identification.

Identification based only on the pattern itself without the

knowledge about the position of a specific mark can be error

prone. We favor heatmaps over exact coordinates to encode

the estimated body landmark location because heatmaps

can represent uncertainty.

The key contributions of this paper are:

• a novel method to exploit body landmark locations to

improve the performance of re-identification system;

• a novel heatmap augmentation method to train the

model to handle missing or not visible landmarks;

• robustness to uncertainty in body landmark coordi-

nates up to 10% of the image size.

2. Related work

There are multiple approaches to re-identification and

some of them use only pixel intensities and some lever-

age additional information such as the semantic structure

of the object (e.g., body parts of a person). We discuss re-

identification methods that include some degree of pose or

body landmark information. Pose information can be ex-

ploited to align the object of interest to a standard pose or

crop patches from the image to obtain local features.

The body and face alignment based on keypoints is used

to eliminate pose variance and improve recognition perfor-

mance. Zheng et al. [25] introduce the PoseBox structure

to align pedestrians to a standard pose. The alignment is

used extensively for face recognition [16, 18, 20]. Nor-

malizing the head orientation of right whales improves the

re-identification performance [1]. However, accurate body

landmark information is hard to obtain and alignment meth-

ods are sensitive to precise coordinates [3]. It is not feasible

to transfer alignment methods directly from person to ani-

mal re-identification.

Landmark coordinates are used to extract local features

from various patches cropped from the image. Recogni-

tion and fine-grained classification methods use these local
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Figure 3. Example of heatmaps for two images. One grayscale channel per a landmark. If the landmark is not visible, the heatmap is black.

These heatmaps have the bright blob with the radius of 5% of the image size. Photo credit: Mark Gray.

features to complement a global representation. Guo and

Farrell [2] construct object representation as the concatena-

tion of hierarchical pose-aligned regions features extracted

from patches around pairs of body landmarks. Tiger re-

identification has been improved by concatenating global

features extracted from the whole image with local features

from limb’s patches [10]. Su et. al [19] explicitly leverage

human body part cues to detect and normalize body parts

to extract local features and combine them in a pose driven

feature weighting subnetwork.

Pose information has also been used to enhance re-

identification by generating new data samples in a pose-

transferable person re-id framework [11]. However, train-

ing image generation models requires a large amount of data

so it cannot be transferred directly to smaller datasets of an-

imal identities.

Several works include pose information to guide fea-

ture extraction. Sarfraz et. al [17] improve person re-

identification by incorporating both fine and coarse pose

information into learning discriminative embeddings. Fine

pose information is confidence maps from off-the-shelf

body landmark predictor. Coarse pose information is the

quantization (‘front’, ‘back’, ‘side’) of a person’s orienta-

tion to the camera. Liu et. al [12] simplifies the tiger body

pose into two categories according to the heading direction

of the tigers to reduce pose variations. However, these ap-

proaches are not transferable to other objects due to coarse

pose labels are specific to the task. In this paper, we intro-

duce a generic method of exploiting body landmark infor-

mation to improve learning of discriminative embeddings.

3. Learning landmark guided embeddings

A pose of an animal’s body with respect to the camera

greatly affects the appearance of natural markings and the

visibility of body landmarks in the photo. It is hard to obtain

accurate locations of body landmarks because images are

taken in the wild environment with an unknown pose of the

animal in front of the camera, complex natural backgrounds

and changing lighting conditions. Information about the

pose has the potential to improve re-identification perfor-

mance.

3.1. Baseline re­identification model

As a baseline re-identification model, we use the sec-

ond best model developed for person re-identification [13]

that is generic enough to be transferred from people to

animals. The state-of-the-art for person re-identification

requires spatial-temporal information [23] and cannot be

transferred to our task.

The backbone of the baseline model is ResNet50 [4] that

is initialized with pre-trained parameters on ImageNet. The

model outputs ReID features f and ID prediction logits p.

ReID features f are used to calculate a triplet loss [5] and

a center loss [24]. Triplet loss pulls embeddings of images

from the same individual closer together while pushing em-

beddings of images of different individuals above a speci-

fied margin. Center loss penalizes the distance between em-

beddings and their corresponding class centers where each

individual is a class. ID prediction logits p are used to

calculated a smoothed cross entropy loss [21] over train-

ing classes to facilitate learning of discriminative features

and are discarded at inference. The training process and all

hyperparameters are inherited from the original work [13].

The baseline model is optimized with a weighted combina-

tion of three losses: the smoothed cross-entropy LID over

training classes, the triplet loss LTriplet and the center loss

LCenter:

LReId = LID + LTriplet + βLCenter (1)

where β = 0.0005 as in [13].
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3.2. Landmark aware re­identification model

We add the body landmark information to the model in-

put by concatenating k extra channels with three RGB im-

age channels (k is a number of landmarks). Each chan-

nel is a grayscale heatmap representing the likelihood of

a landmark location. Figure 3 shows two images of manta

rays and corresponding heatmaps. These additional chan-

nels guide feature extraction to learn embeddings that are

aware of the location of distinctive features with respect to

body parts.

Information about landmarks can be obtained from an-

other model that predicts landmarks based on the image

(this task is out of the scope of the current work). Land-

marks can also be annotated manually.

The model is encouraged to use landmark information by

learning the auxiliary reconstruction task of input heatmaps

from embeddings, see Figure 2. We also experimented

with the heatmap reconstruction block branched off after

the third dimensionality reduction step and the results were

similar to the reconstruction from the final features. We call

this model a Landmark-Id model.

The Landmark-Id model is optimised with the following

loss:

L = LReId + αLHR (2)

where heatmap reconstruction loss LHR is a binary cross-

entropy. We experimented with α equal to 0.1, 1 and 10

and observed no difference in accuracy so we set α = 1.

The Landmark-Id model is trained in two stages. At

the first stage only randomly initialised weights in the first

layer and in the final classification layer are trained while all

other weights remain fixed. Once these layers are adapted

to the rest of the network, the whole network is fine-tuned.

The parameters in the first layer of ResNet50 are initial-

ized randomly because the number of input channels dif-

fers from the number of channels in ImageNet due to the

additional heatmap input. The rest of the parameters in

ResNet50 model are initialized with ImageNet pretrained

weights. Heatmap reconstruction block is not trained at this

stage.

At the second stage, the heatmap reconstruction branch

is added with randomly initialised weights. Only the

heatmap reconstruction block is trained for the first ten

epochs to tune random weights. Then the whole model is

fine-tuned with a ten times smaller learning rate than in the

first stage.

3.3. Heatmap augmentation

We introduce two augmentation techniques for heatmaps

to improve the generalization ability of the Landmark-Id:

noisy landmark augmentation (NLA) and missing landmark

augmentation (MLA). Locations of body landmarks cannot

Figure 4. Noisy landmark augmentation (NLA) on heatmaps with

different levels of uncertainty about landmark locations. The true

coordinate is located inside the bright blob but not necessary in the

middle.

always be annotated correctly especially when these are ob-

tained from an automated landmark detection method. Due

to large variations in animal poses some landmarks may not

be visible in the image. NLA and MLA address these two

problems.

NLA randomly shifts the blob in each heatmap (by de-

fault the center of the blob is the landmark) by a number of

pixels less or equal than the radius of the blob, see Figure 4.

This way the landmark location is still contained within a

blob but not always in the middle.

MLA has two parameters: a minimum number M of

visible landmarks (specific to the dataset) and a probabil-

ity pmla. If there are more than M landmarks visible in the

image, than some of them may be set to missing with prob-

ability pmla. In practice, a missing landmark means that the

corresponding heatmap is set to all zeros. The motivation

for this augmentation is imbalanced data when there are not

enough examples for the model to learn to reconstruct black

heatmaps for not visible landmarks. We list the hyperpa-

rameters used for MLA in the Experiments section.

4. Experiments

4.1. Datasets

4.1.1 Synthetic dataset

We verify ideas on a synthetic dataset first as it gives the

ability to control the number and variety of examples. The

design of synthetic images is inspired by manta rays belly

patterns but does not aim to replicate it. Consider a collec-

tion of seed patterns P = {P1, . . . , Pn} where each pat-

tern Pi is a unique pattern of black filled ellipses on a white

background inside at triangle area in the center as illustrated

in Figure 5 (first column). The corners of the triangle play

the role of body landmarks. The image itself does not have

any information about landmark locations. Landmark coor-

dinates are recorded in a separate array.

Seed patterns represent a canonical view from a camera

placed directly in front of it. When the camera moves, the

projection of the pattern on the camera plane will be re-

lated to the canonical view by a homography. We call an
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Figure 5. Example of three identities from the synthetic dataset.

Each row shows a seed pattern and three generated examples for

one identity. Coloured points represent locations of three land-

marks and are plotted over images for illustration only and do not

appear on images in the generated dataset.

Figure 6. Example of three identities from a manta rays dataset

(real images). Each row shows four examples of one identity.

Coloured points are landmark locations and are plotted over im-

ages for illustration only and do not appear on images in the

dataset. Photo credit: Mark Gray, Graeme Haas, Fabrice Jaine,

Kathy Townsend.

identity Ii a unique pattern of ellipses where examples be-

longing to this identity are generated by applying random

projective transformations to the canonical pattern Pi and

adding a random background (see examples in Figure 5).

To randomise textures of a background and a pattern we

use patches from images showing underwater scenes with-

out any salient objects [22]. The pixel intensities in a back-

ground image are rescaled to be lighter than pixel intensities

of a pattern texture to avoid merging of the pattern with the

background. Finally, images are converted to grayscale and

Gaussian noise is added. Landmark coordinates are warped

the same way as a pattern and are recorded in a correspond-

ing array.

The dataset consists of 3 subsets: a train, a gallery and

a query. Each subset has images for 750 identities with

the resolution 128 × 128. The gallery and the query sub-

sets share the same identities while having disjoint identities

with the training set. The training and the gallery sets have

only 3 examples for each individual to simulate a limited

data scenario. More examples per individual would make

the re-identification task easier. The query set has 5 images

per individual.

4.1.2 Dataset of real images

As a real dataset, we use images of manta rays collected by

Project Manta (a multidisciplinary research program based

at the University of Queensland, Brisbane, Australia). The

dataset is challenging as images are captured underwater at

oblique angles in different illumination conditions and with

small occlusions (fish, water bubbles). Each image has been

manually annotated with five most distinctive landmarks:

right eye, left eye, outer corner of the fifth right gill, outer

corner of the fifth left gill, tail (see examples in Figure 6).

We select eyes and a tail as landmarks as these are easy

to identify in images. Bottom gill slits on both sides have

distal black marks that are salient and visible most times

[6]. Only around half of the images have all 5 landmarks

visible, 30% of the images have 4 visible landmarks and the

rest have 3 and less visible landmarks.

The training set has 110 identities with 1422 images in

total. The test set consists of 18 identities (different from

the training) with 321 examples in total. Images are taken

by a large number of researchers and photographers so we

assume that each image comes from a different camera. Due

to the limited size of the data we use one test set instead of a

separate gallery and query sets. The gallery set is created by

combining the training set with two random images of each

individual from the test set. The rest of the images from the

test set are used as a query set. This way each query image

has two matching examples in the gallery.

4.2. Landmarks input as heatmaps

Landmark coordinates are converted to heatmaps with

one grayscale channel per a landmark, see Figure 3. The

heatmap is created by running a Gaussian filter over a white

disk on a black background to smooth the edges. The cen-

ter of the heatmap has equal intensity so there is no addi-

tional clue where the landmark is located. Heatmaps are

used as an input to the model instead of exact coordinates

to accommodate different levels of uncertainty in landmark

locations. If the landmark is not visible the heatmap is all
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Model Top-1 Top-5 Top-10

Baseline Reid 63.81% 85.35% 90.94%

Landmark-Id Stage 1 78.10% 91.82% 94.41%

Landmark-Id Stage 2 89.53% 95.96% 96.98%

Table 1. Landmark-Id outperforms the baseline re-identification

model on the synthetic dataset. Stage 1 is the model trained

with additional heatmap input and Stage 2 is the model with the

heatmap reconstruction block.

zeros.

Heatmaps for the synthetic dataset are generated with

three settings for the radius of the blob (5%, 10% and 20%

of the image size) to evaluate the sensitivity of the model

to the uncertainty in landmark locations. Heatmaps for the

manta ray dataset have the radius 5% of the image size.

4.3. Model architecture

We use ResNet50 model as a core feature extractor with

the output feature maps pooled globally to produce a vector

of size 2048. Then one fully connected layer is used to

reduce the dimension to 256.

The heatmap reconstruction block decodes heatmaps

from an embedding using three blocks consisting of bi-

linear upsampling with a factor of 2, a convolutional layer

with the kernel 3 × 3, a batch normalization layer and a

relu activation function. Reconstructed heatmaps have res-

olution 64 × 64 for any input size. This does not affect the

network’s ability to reconstruct locations of body landmarks

and allows us to minimise the number of parameters in the

heatmap reconstruction branch.

4.4. Training and evaluation

Data augmentation is applied on the fly to images and

corresponding heatmaps in the same way. We use rotations

up to 360 degrees, zooming up to 20% of image size and

translations up to 20%. The same augmentation is applied

when training the baseline model. Heatmap augmentation

NLA shifts the blob in heatmaps to imitate noise in land-

mark coordinates. The minimal visible landmarks in MLA

is set to 2 (out of possible 3) for the synthetic dataset and

3 (out of 5) for the manta ray dataset. The probability of

missing a landmark is 50%.

The model is trained on the training subset. The test ac-

curacy is obtained on new identities never seen during train-

ing. The test accuracy is computed by retrieving predictions

from the gallery set for each image in the query set. We use

top-1, top-5 and top-10 test accuracy for model evaluation.

Figure 7. Progress of top-1 accuracy on the test set during training

evaluated each 10 epochs on the synthetic dataset. Landmark-Id

Stage 2 continues training from Stage 1. Models are trained until

convergence of the loss.

Model Top-1 Top-5 Top-10

Baseline Reid 44.00% 78.60% 84.70%

Landmark-Id Stage 1 52.67% 80.11% 86.18%

Landmark-Id Stage 2 62.04% 89.82% 91.96%

Table 2. Accuracy of re-identification on manta ray dataset.

Landmark-Id outperforms the baseline re-identification model.

Stage 1 is the model trained with additional heatmap input and

Stage 2 is the model with the heatmap reconstruction block.

4.5. Results

4.5.1 Landmark-Id vs baseline

The baseline results are obtained with only RGB images as

input. Landmark-Id model outperforms the baseline model

on both synthetic and real datasets that demonstrates that

additional pose information is beneficial for learning dis-

criminative embeddings, see Tables 1 and 2. Landmark-Id

model reaches 89.53% top-1 accuracy versus 63.81% top-1

accuracy of baseline model on the synthetic data (Table 1).

The real data is more challenging. Baseline model demon-

strates 44.00% top-1 accuracy while Landmark-Id model

goes up to 62.04% (Table 2).

We evaluate top-1 accuracy on the test set during train-

ing every 10 epochs on the synthetic dataset, see Fig-

ure 7. Landmark-Id model at Stage 1 (heatmap input with

no reconstruction) shows higher accuracy than the base-

line model. Stage 2 with auxiliary heatmap reconstruction

further boosts the performance. Landmark-Id model with-

out reconstruction block outperforms the baseline model.

Adding the heatmap reconstruction block is useful as it pro-

motes usage of pose information during feature extraction

and improves accuracy on both synthetic and real data.

The above results are obtained with no noise in landmark
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Model Top-1 Top-5 Top-10

Landmark-Id, hm 5% 86.13% 93.12% 95.82%

Landmark-Id, hm 10% 84.72% 92.84% 95.31%

Landmark-Id, hm 20% 66.62% 83.18% 88.85%

Table 3. Sensitivity of Landmark-Id to uncertainty in landmark lo-

cations is analysed with three sizes of heatmaps: 5%, 10% and

20% of the image size. The model shows almost equal perfor-

mance for heatmaps with the blob radius up to ±10% of the image

size.

Model Top-1 Top-5 Top-10

Landmark-Id, with MLA 62.04% 89.82% 91.96%

Landmark-Id, no MLA 55.30% 87.47% 89.12%

Table 4. MLA (missing landmark augmentation) improves robust-

ness of Landmark-Id to not visible landmarks. Evaluated on real

dataset of manta ray images.

coordinates and heatmaps of 5% of the image size. We anal-

yse the sensitivity of the model to uncertainty and noise in

the next section.

4.5.2 Sensitivity to uncertainty in landmark locations

We investigate the sensitivity of the model to uncertainty

in landmark locations by training and evaluating the model

on the synthetic dataset with different settings for the size

of the bright blob in heatmaps. Three experiments are con-

ducted with the radius of the blob 5%, 10% and 20% of

the image size (see Figure 4). NLA adds noise to heatmaps

shifting the center from the actual landmark location. The

blob with a radius of r% means that the average noise in a

landmark location is ±r% of the image size.

Noise of 5% and 10% in landmark locations slightly de-

creases the accuracy (Table 3). The noise of ±20% de-

creases the top-1 accuracy to 66.62%. This is a high level

of uncertainty because the blob with the radius 20% of the

image size covers almost a quarter of the image. We con-

clude that a landmark detection model should have at most

10% error to predict landmark coordinates useful for re-

identification.

4.5.3 Sensitivity to missing landmarks

To evaluate the sensitivity of Landmark-Id model to miss-

ing landmarks, we train the model without the MLA aug-

mentation. The synthetic dataset has most of the landmarks

visible at all times so we use real data in this experiment.

The manta ray dataset has around 50% images with all five

landmarks visible, 30% of images with four landmarks vis-

ible and the rest with three and less visible landmarks.

Without MLA augmentation top-1 accuracy drops to

55.30% from 62.04% on manta ray dataset (Table 4).

5. Conclusion

We demonstrated that the additional input of body land-

marks improves learning of discriminative embeddings.

This method is robust to uncertainty in landmark locations

and tolerates errors in landmark coordinates up to 10% of

the image size.

We will conduct experiments on other real datasets (e.g.,

ATRW [9], ELPephants [7]). In the future, we plan to in-

vestigate how to train an accurate body landmark predictor

on a small dataset and integrate it with the re-identification

model.
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