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Abstract

Learning embeddings that are invariant to the pose

of the object is crucial in visual image retrieval and re-

identification. The existing approaches for person, vehicle,

or animal re-identification tasks suffer from high intra-class

variance due to deformable shapes and different camera

viewpoints. To overcome this limitation, we propose to align

the image embedding with a predefined order of the key-

points. The proposed keypoint aligned embeddings model

(KAE-Net) learns part-level features via multi-task learning

which is guided by keypoint locations. More specifically,

KAE-Net extracts channels from a feature map activated

by a specific keypoint through learning the auxiliary task

of heatmap reconstruction for this keypoint. The KAE-Net

is compact, generic and conceptually simple. It achieves

state of the art performance on the benchmark datasets of

CUB-200-2011, Cars196 and VeRi-776 for retrieval and re-

identification tasks.

1. Introduction

Learning pose invariant image embeddings is critical for

visual search tasks such as image retrieval, person or vehi-

cle identification. Pose variations means that the position

of parts of the class instance (a person or a car) within the

image is not known and the poses of the objects across the

dataset are not aligned. As an example, the same car looks

differently from the front and the rear and the appearance of

a bird changes dramatically with its activities (e.g., flying or

sitting). Large intra-class variations caused by a variety of

viewing angles pose a challenge for many image retrieval

and identification tasks when learning discriminative em-

beddings.

In recent years, this problem has been approached by

learning an image representation in such a way that images

from the same class (e.g., a bird species, a person or a car)

are mapped closer to each other compared to the images

from different classes. To this end, researchers have pro-

posed new loss functions [31, 40, 30, 24], introduced new

methods to mine useful training samples [20, 39] and devel-

Figure 1. Our KAE-Net learns an image embedding that consists

of several subvectors where each subvector corresponds to a spe-

cific keypoint. The figure shows a keypoint aligned embedding

with subvectors for four bird keypoints: beak, right eye, belly, tail.

oped approaches to reduce embedding space diversity [8, 7].

These methods rely on a large corpus of training data to

learn the relevant features and depend on the discriminating

power of the samples that are presented to the network.

Another stream of research is focused on image align-

ment as an effective method to accommodate to viewpoint

variations and it is used successfully in face re-identification

thanks to a range of robust and accurate methods to detect

facial landmarks [37]. However, this approach is limited in

a sense that it requires precise detection of keypoints and in

case of non-overlapping views (e.g., a front and a back view

of a car) image alignment is not possible.

To overcome this limitation, instead of aligning images,

we propose to achieve pose invariance by learning a pose in-

variant representation. Our work approaches metric learn-

ing from a different angle: We learn embeddings that are

pose invariant by training a neural network on the auxiliary

task of predicting the locations of keypoints.

More specifically, we learn a keypoint aligned embed-

ding that consists of subvectors where each subvector en-

codes a specific keypoint (Figure 1). This is motivated by

the fact that the average pooling across spatial dimensions

in the feature map of a convolutional neural network (CNN)

generates a saliency map that depicts the most distinctive

parts of the image [33]. Moreover, different channels in

the feature map are activated more strongly at those regions

676



which correspond to specific parts of the object in the image

(e.g., person’s body parts) [40, 42]. We utilize the corre-

spondence between channels of the feature map and image

parts to align an image embedding with keypoints. In other

words, an image embedding consists of a number of sub-

vectors where each one corresponds to a specific part of the

object as shown in Figure 1.

Our proposed keypoint aligned embeddings model

(KAE-Net) explicitly learns subvectors representing each

keypoint in a multi-task fashion guided by the auxiliary task

of keypoint reconstruction. Multi-task learning allows us to

jointly optimize both localization of keypoints and learn-

ing discriminative image embeddings. Our proposed sys-

tem can be seen as an improvement on existing works that

attempt to localise salient parts and learn the class label sep-

arately [3, 44], generate discriminative region proposals in

parallel with feature learning [43], or utilize unnecessarily

complicated part attention models [22].

Our contribution is three-fold:

• We propose KAE-Net, a conceptually simple, but ef-

fective model to learn pose invariant image embed-

dings;

• We demonstrate that it is possible to learn pose invari-

ant embeddings with the auxiliary task of reconstruct-

ing pose information;

• Our approach is not domain specific and achieves

significant improvement over the state-of-the-art on

benchmarks CUB-200-2011 [34], Cars196 [11] and

VeRi-776 [15, 16, 17].

The paper is organised as follows. Related work on

embedding learning using pose information and multi-task

learning is reviewed in Section 2. KAE-Net architecture is

described in Section 3. Experimental settings, datasets and

results are discussed in Section 4.

2. Related work

In this section, we discuss methods that use some degree

of pose information (object parts, segmentation masks, or

keypoints) to facilitate embedding learning. We also cover

multi-task learning approaches for image retrieval and re-

identification that are related to our work.

2.1. Utilizing Pose Information

Pose information has been used for vehicle re-

identification which is a task of identifying a specific ve-

hicle from the images taken by several non-overlapping

cameras on the street. The most successful methods for

vehicle re-identification involve deep metric learning ap-

proaches that exploit keypoint locations [9, 12, 32, 29, 1].

Wang et al. [32] proposed an orientation invariant feature

embedding module that learns viewpoint invariant features

based on 20 keypoint locations. PAMTRI (Pose-Aware

Multi-Task Re-Identification) framework [29] explicitly re-

ceives information about a vehicle pose via keypoints,

heatmaps, and segments as additional inputs. Chu et al. [1]

propose a view-point aware network that learns two sepa-

rate metrics for similar and different viewpoints in two fea-

ture spaces.

Including pose information can be also beneficial for a

person re-identification task where a person should be re-

identified across different cameras. Several works [27, 44]

explicitly leverage cues about body part locations and learn

feature representations from the full image and different lo-

cal parts. [40, 2] use feature map responses to localize ob-

ject parts without supervision, and pool over region propos-

als in a weakly supervised manner. Information about the

2D pose in the form of a heatmap is added explicitly to the

image input as additional channels in [25, 21]. However, it

is unclear how this additional input is used by the model to

learn an embedding. To overcome this limitation, [3] uti-

lizes keypoint locations and crops patches around the key-

points, extracts features, and concatenates them in one em-

bedding vector for prediction. This method has been used

for fine-grained bird classification.

2.2. Multi­task Learning

Multi-task learning is used to simultaneously optimize

for several tasks and improve the generalization with the

supervision from several objectives. Apart from the main

tasks, which are the final output of the model, auxiliary

tasks serve as additional regularization for learning a rich

representation of an image [18]. Auxiliary modules are usu-

ally removed during the inference stage.

Learning an auxiliary task improves performance in

scene understanding [13, 18], and vehicle re-identification

[29]. Ding et al. [2] show the benefits of multi-task attention

for learning a part-aware person representation.

Our work is close to [3] in spirit, as it leverages keypoint

locations. However, in [3], cropping patches removes the

context and training a separate network for each keypoint

patch results in a large and complicated network to train.

To avoid this problem, our method guides the learning of

a keypoint aligned embedding using the auxiliary task of

keypoint reconstruction. Jointly learning an auxiliary task

boosts the performance of the main task [13].

Different from [40, 2], we do not pool over region pro-

posals and use full spatial dimensions of the feature map

for pooling. Our approach uses guidance from keypoint

heatmaps to select channels in the feature maps that are the

most responsive for the specific keypoint.
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Figure 2. KAE-Net architecture. KAE-Blocks do not share weights. The number of KAE-Blocks is equal to the number of keypoints

defined for the object of interest. KAE-Net outputs a keypoint aligned embedding, class scores and keypoint heatmaps.

3. Proposed Approach

In this section, we introduce a keypoint embedding block

(KAE-Block), a new sub-network for learning pose invari-

ant keypoint embeddings, and explain the architecture of the

whole network. Our network learns features corresponding

to each keypoint to construct a representation that is aligned

with the order of the keypoints. The order of the keypoints

is arbitrary and is specified with the model definition.

Note that since our method is generic, and is applicable

to other-than-human such as vehicles and birds, we use the

term keypoints instead of body joints or body parts.

3.1. Keypoint Aligned Embedding Network

The backbone of KAE-Net is a CNN that outputs a fea-

ture map FC of size C ×H ×W . It has been observed in

[33] that different channels in the feature map extract var-

ious meaningful parts of the images. Building on the idea

that only a subset of the channels in the feature map is ac-

tivated for each keypoint, we train the KAE-Block to se-

lect these channels. To this end, we jointly optimize for the

main task of embedding learning and the auxiliary task of

keypoint heatmap reconstruction. We describe KAE-Block

in detail in Section 3.2.

The model assigns one KAE-Block to each keypoint

(Figure 2). The user-defined order of the keypoints is fixed

for the training and inference. During training, the model

outputs a keypoint aligned embedding, class scores, and

keypoint heatmaps for each input image. During inference,

only the image embedding is computed.

3.2. KAE­Block

A KAE-Block consists of several parts: channel rescal-

ing, channel selection, an embedding block, and a heatmap

reconstruction block (Figure 3). A KAE-Block accepts a

feature map FC of the size C × H × W and outputs an

embedding vector of the length d = C/r, with r a reduc-

tion rate, and a reconstructed keypoint heatmap of the size

Figure 3. A KAE-Block receives a feature map FC of the size

C × H × W as an input and outputs a keypoint embedding hi

and a keypoint heatmap mi. A KAE-Block consists of a channel

rescaling part, a channel selection part, an embedding block and a

heatmap reconstruction block.

1×Hhm ×Whm, with Hhm ≥ H , and Whm ≥ W .

Global average pooling (GAP) over feature maps [14] is

commonly adopted to aggregate spatial information. Global

max pooling (GMP) also provides an important cue about

distinctive object features. We use both GAP and GMP as

it was proved by Woo et al. [36] that using both descriptors

is effective for learning channel attention.

A channel rescaling part of the KAE-Block first pools the

feature map FC using GAP and GMP into the vectors F a
C

and Fm
C , respectively. Both vectors are passed to a small
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shared network φ. Then, the output vectors φ(F a
C) and

φ(Fm
C ) are summed elementwise followed by the sigmoid

function σ to normalize the values between 0 and 1. The

produced channel attention map MC is essentially a vector

of weights to scale the original features maps FC :

MC = σ(φ(F a
C)⊕ φ(Fm

C )) (1)

Inspired by [23], the shared network φ is a fully con-

nected network with d hidden neurons and C output neu-

rons. Each layer is followed by ReLU and Batch Normal-

ization [6]. We use d neurons in the hidden layer to reduce

the number of parameters.

A KAE-Block scales feature maps FC with the atten-

tion vector MC by element-wise multiplication. The output

FC ⊙MC is fed into 1×1 convolution with d filters to get a

feature map Fd with the shape d×H×W . Note that, while

the number of channels is reduced, the spatial dimension

remains the same.

Learning channel scaling and selection is supervised by

two tasks: learning an embedding and reconstructing a key-

point heatmap. A keypoint reconstruction part of a KAE-

Block learns a heatmap from the reduced feature map Fd

using a series of deconvolutional layers. An embedding

learning part applies global max pooling to Fd followed by

a fully connected layer to output a keypoint embedding.

The model uses one separate KAE-Block for each key-

point:

(hi,mi) = KAE-Blocki(FC) (2)

for i ∈ {1, ...,K}, with K the number of keypoints, hi a

keypoint embedding, and mi an output heatmap for the i-th
keypoint.

Ultimately, the K keypoint embeddings are concatenated

into one keypoint aligned embedding:

h = [h1, h2, ..., hK ]. (3)

3.3. Loss Function

The KAE-Net learns keypoint aligned embeddings with

a combination of losses which are jointly optimized for the

main and the auxiliary tasks. More specifically, the over-

all objective function optimized during the training is the

weighted sum of the following losses:

L = λkLkp-tri + λhLhm + λvLvis + λcLce, (4)

We select the weights λ such that all the losses remain at

the same scale. We now discuss each component of the loss

function.

Lkp-tri: We compute a triplet loss [5] Lkp-tri for the image

embedding h as well as for subvectors [h1, h2, ..., hK ]. The

triplet loss aims to learn a representation where the distance

between the points in the embedding space of intra-class

image pairs will be smaller than the one of the inter-class

image pairs.

Some keypoints may be not visible in the image so com-

puting loss over embeddings hi for these keypoints would

result in learning with a lot of noise. Thus, the triplet loss

Ltri for each keypoint embedding is computed only on visi-

ble keypoints.

We use BatchHard [5] triplet mining strategy that selects

the hardest negative and positive pairs within a batch. To

prevent the noisy embeddings from contributing as hard ex-

amples to the loss, we disregard the embeddings of non-

visible keypoints. We further compute the triplet loss over

the whole image embedding h to make it robust to noise:

Lkp-tri =
1

K

K
∑

i=1

∑

(ha
i
,h

p

i
,hn

i
)∈Vi

Ltri(h
a
i , h

p
i , h

n
i )

+
∑

Ltri(h
a, hp, hn),

(5)

Here, (ha
i , h

p
i , h

n
i ) are triplets of embeddings in a batch

that belong to the subset Vi of embeddings, with the i-th
keypoint visible, and (ha, hp, hn) denote triplets of image

embeddings.

Lhm: The reconstruction of keypoint heatmaps is super-

vised with the mean squared error loss Lhm between an on

output and ground truth heatmaps.

Lvis: In addition to the reconstruction loss, we guide the

learning of the heatmaps for not-visible keypoints with the

binary cross-entropy loss. In particular, if the keypoint is

not visible, the corresponding ground truth heatmap is all

zeros. Therefore, to suppress the signal for not-visible key-

points, we apply binary cross entropy Lvis on max pooled

reconstructed and ground truth heatmaps:

Lvis = −
1

KN

N
∑

j=1

K
∑

i=1

(

yij · log σ(max(mij))

+ (1− yij) · log
(

1− σ(max(mij))
)

)

(6)

with mij an output heatmap and K the number of key-

points.

Here, yij is a ground truth visibility for the i-th keypoint

of j-th example in a batch of size N . A ground truth visi-

bility yij is the maximum of the corresponding ground truth

heatmap which is zero if the keypoint is not visible and one

otherwise. Function σ is a sigmoid function that is com-

bined with the log in the loss instead of applied as a layer

for numerical stability.

Lce: As proven to be effective on re-identification base-

lines [19, 35], we apply cross-entropy loss Lce for training

class scores.
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Backbone CUB-200-2011 Cars196

Method model R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Margin [20] ResNet50 63.6 74.4 83.1 90.6 79.6 86.5 91.9 95.1

EPSHN512 [39] ResNet50 64.9 75.3 83.5 - 82.7 89.3 93.0 -

NormSoftmax [41] ResNet50 65.3 76.7 85.4 91.8 89.3 94.1 96.4 98.0

SoftTriple [24] BN-Inception 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

MS512 [31] BN-Inception 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

ABE+HORDE [7] BN-Inception 66.8 77.4 85.1 91.0 86.2 91.9 95.1 97.2

KAE-Net (ours) ResNet50 74.2 83.3 89.1 93.2 91.1 94.9 96.9 98.1

Table 1. Comparison of retrieval performance with recent methods on CUB-200-2011 and Cars196. Results in percents.

3.4. Evaluation

We evaluate our model on the tasks of image retrieval

and re-identification, following the metrics adopted in the

literature for these tasks.

For retrieval, the dataset is split into training and test-

ing subsets with disjoint classes. The retrieval metric Re-

call@R is the percentage of the testing examples whose set

of R nearest neighbours includes at least one example of the

same class [30].

For the re-identification task, the adopted evaluation

schema assumes two datasets for evaluation: a query and

a gallery sets with identities not present during training.

For multi-camera scenario, each example is labelled with

a camera ID in addition to the identity ID. For each query

image the predictions are selected from the gallery set ex-

cluding the images that share the same identity and camera

ID as the query. Evaluation metrics adopted for this dataset

are Cumulative Match Curve for top 1 (CMC@1) and top 5

(CMC@5) matches, as well as the mean Average Precision

(mAP) [15].

Many retrieval and re-identification pipelines apply re-

ranking step at the end to rearrange the predictions and as-

sign higher rank to some of the samples, which helps with

improving their performance. Note that, we do not adopt

these techniques, confirming that the superiority of our ap-

proach is independent of any re-ranking strategies.

4. Experiments

In this section, we compare the results of our KAE-

Net with the state-of-the-art on three benchmark datasets of

CUB-200-2011, Cars196 and VeRi-776 for image retrieval.

The reason behind choosing these datasets is the availabil-

ity of image level labels and keypoint annotations which are

required in our approach. Note that, our method is applica-

ble to the datasets with the same type of objects categories

(e.g. cars, birds) where keypoints are consistent across im-

ages.

Implementation details: We use ResNet50 [4] as the

backbone network that outputs feature maps with the num-

ber of channels C = 2048. Input images in all our experi-

ments are resized to 256× 256, resulting in feature maps of

size 2048×16×16. The training images are augmented by

random horizontal flip and normalization.

We set the reduction rate to r = 32, meaning that fea-

tures are reduced to the size 64×16×16 for each keypoint.

To get larger spatial feature maps before layer 4, we remove

the dimensionality reduction.

Our model is learning to reconstruct heatmaps that are

created by placing a Gaussian kernel with variance 1 in the

keypoint coordinate. We use heatmaps of size 64×64 which

are four times smaller than the input image. If a keypoint

is not visible then it is represented with a heatmap with all

zeros. Keypoint coordinates are only used during training

and are not required for inference.

Euclidean distance (L2) is used to compute similarity

score between query and gallery images during training and

testing. The training batch consists of 64 images with 8 im-

ages per class/identity.

KAE-Net is trained in several steps. In the first step,

we finetune the backbone ResNet50 pretrained on Ima-

geNet [4] on the training set by optimizing the sum of

triplet and cross-entropy losses with the learning rate of

1 × 10−4. Then, we freeze the backbone weights and train

randomly initialised weights of KAE-Blocks with the target

loss L with the learning rate of 1 × 10−3. Finally, we tune

the whole model with the loss L and the learning rate of

1× 10−4.

We adopt Adam optimizer with a weight decay of 1 ×
10−4 to train KAE-Net. We use the triplet loss with a soft

margin [5] to avoid margin parameters. The weights of loss

components are selected to keep all losses at the same scale:

λk = 10, λh = 1000, λv = 1, λc = 1.

4.1. Datasets

CUB-200-2011

The dataset CUB-200-2011 [34] of bird images is an-

notated with fine-grained bird category labels and 15 body

parts such as beak, right eye, forehead, left eye, back, breast.

We use the split adopted for the image retrieval task with the

first 100 classes selected for training and the rest 100 classes

for testing. Each class has on around 40-60 images. The
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Method / Backbone model CMC@1 CMC@5 mAP

AAVER RN50 [10] 88.68 94.10 58.52

AAVER RN101 [10] 88.97 94.70 61.18

VANet GL [1] 89.78 95.99 66.34

BS M [12] 90.23 96.42 67.55

PAMTRI∗ DN121 [29] 90.94 96.72 65.44

KAE-Net RN50 (ours) 93.62 96.84 70.89

Table 2. Comparison with recent methods and state-of-the-art on

VeRi-776. (*) we show results on real data only without additional

synthetic data. Backbone networks: RN50 - ResNet50, RN101 -

ResNet101, DN121 - DenseNet121, GL - GoogLeNet, M - Mo-

bilenet.

adopted evaluation metric for retrieval on CUB-200-2011 is

Recall@1, Recall@2, Recall@4 and Recall@8.

VeRi-776

VeRi-776 [15, 16, 17] is an image dataset of 776 dis-

tinct vehicles that were taken with 20 non-overlapping cam-

eras in variety of orientations including front, rear and side

views. The licence plates are erased from the images. The

dataset has 49,357 images in total with 37,778 (576 identi-

ties) for training and 11,579 (200 identities) for testing. The

query set consists of 1,678 images selected from the query

set. The adopted evaluation metric for VeRi is CMC@1,

CMC@5 and mAP in cross-camera setting [15].

We use the ground truth annotations for 20 keypoints on

the training set publicly provided in [32].

Cars196

Cars196 [11] is a popular benchmark for image retrieval

with 16,185 images of 196 car models. We use the conven-

tional protocol of splitting and use the first 98 classes (8,054

images) for training and the remaining 98 classes (8,131 im-

ages) for testing. The evaluation metric is the same as for

CUB-200-2011.

Cars196 dataset does not have keypoint annotations. We

fine-tuned a pose estimation network HRNet [28, 38] from a

provided checkpoint to detect 20 car keypoints on annotated

VeRi-776 [32]. We can observe that 94.5% keypoints can be

correctly predicted within 10 pixels (4% of the image size)

to the ground truth. The domain shift between VeRi776 and

Cars196 makes the predictions on the latter less accurate.

We visually inspect the predicted keypoints on Cars196 and

conclude that many keypoints are detected correctly. We

use the predicted keypoints to train our model.

4.2. Results

The results of our KAE-Net against the state-of-the-art

for image retrieval on CUB-200-2011 and Cars196 are re-

ported in Table 1. Most previous works in image retrieval

are metric learning methods. Our method adds pose infor-

mation to the embedding learning and outperforms the pre-

vious works by large margin achieving 74.2% and 91.1%

Method R@1 R@2 R@4 R@8

w/ KAE-Blocks 74.2 83.3 89.1 93.2

w/o channel scaling 71.1 81.1 87.9 92.8

w/o KAE-Blocks 68.8 79.2 86.9 92.4

Baseline / ResNet50 66.9 77.4 85.3 91.1

Table 3. Ablation study on CUB-200-2011. We compare perfor-

mance of the baseline model, KAE-Net without KAE-Blocks and

KAE-Net with KAE-Blocks but without channel rescaling part.

Figure 4. Visualization of class activation maps (CAMs) with

Grad-CAM [26] of the baseline model and KAE-Blocks for dif-

ferent keypoints. The baseline model focuses mainly on the head

while KAE-Blocks attend to various body parts. Each row shows

CAMs for one image.

Figure 5. Recall@1 on subvectors of keypoint embeddings on

CUB-200-2011. Subvectors of embeddings corresponding to a

tail, a throat and a right wing have the highest recall.

Recall@1 on CUB-200-2011 and Cars196 respectively.

We further evaluate our method on VeRi-776 dataset,

and compare it against the state-of-art methods of dual-

path model with adaptive attention (AAVER) [10], viewpoint

aware network VANet [1], pose-aware multi-task learning
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Figure 6. Qualitative visualization of the performance of KAE-Net on image retrieval on CUB-200-2011. The first image in each row is

a query image. The top 5 matched test images are shown for each query image. Green and red boxes represent the same class (true) and

different classes (false), respectively. Best viewed in colour.

model (PAMTRI) [29], as well as the strong baseline with

the triplet loss [12]. All above methods use visual informa-

tion from the image and do not use meta data such as car

plates registration numbers.

We further compute the results without re-ranking and

without usage of any external data (real or synthetic) as

shown in Table 2. There is a variety of backbone mod-

els used in previous works. Our method with the back-

bone ResNet50 outperforms previous methods and reaches

93.62% CMC@1, 96.84% CMC@5 and 70.89% mAP.

Ablation Study: We perform ablation study on CUB-

200-2011 dataset (Table 3). The baseline network is ob-

tained by fine-tuning convolutional layers of ResNet50 with

the global average pooling layer and one fully connected

layer on top to output an embedding of length 2048 (equal

to the number of feature maps). The baseline network is

optimized with the triplet loss and reaches 66.9% accuracy

with the Recall@1. Our baseline is strong and shows com-

petitive performance with methods from Table 1 because it

uses large embeddings of length 2048.

As shown in Table 3, removing the channel scaling part

from KAE-Blocks reduces Recall@1 from 74.2% to 71.1%.

We further remove KAE-Blocks from the model to evalu-

ate its contribution to the performance. Removal of KAE-

Blocks drops the retrieval Recall@1 to 68.8% compared to

74.2% of KAE-Net with KAE-Blocks. As observed, KAE-

Net without KAE-Blocks reconstructs heatmaps and learn

embeddings from the same feature map FC .

Visualization: We analyse our proposed method by vi-

sualizing class activation maps (CAMs) of the predictions

using Grad-CAM [26] on three images of birds (Figure 4).

We observe that CAMs of the baseline model are activated
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Figure 7. Qualitative visualization of the performance of KAE-Net on cross-camera vehicle re-identification on VeRi-776. The first image

in each row is a query image. The top 5 matched gallery images are shown for each query image. Green and red boxes represent the same

identity (true) and different identities (false), respectively. Best viewed in colour.

mainly around the head while KAE-Blocks focus on differ-

ent parts of the bird guided by keypoints.

We further analyse the segments hi of keypoint aligned

embeddings h learnt with KAE-Net on CUB-200-2011. An

image embedding consists of 15 subvectors hi (for 15 key-

points on CUB-200-2011) with the length of 64 each. We

perform the evaluation procedure using each subvector of

an embedding separately to investigate which keypoints are

the most discriminative. Figure 5 shows that areas around

tail, throat and right wing have the highest recall.

Lastly, we show some examples of matches using our

proposed method on CUB-200-2011 in Figure 6 and VeRi-

776 in Figure 7. Our model found the matching bird classes

with the presence of large pose variations including flying

and sitting poses (Figure 6). As shown in Figure 7, our

approach found the same vehicle in different cameras even

when the viewpoint has changed from the front to the back

view.

5. Conclusion

In this work, we propose a multi-task method to learn

pose invariant embeddings. The method is generic and does

not use specific domain information. In future, we will

investigate if additional domain knowledge such as using

symmetry of some body parts for birds (e.g. eyes, wings

and legs) or combining some keypoints for cars can further

improve the performance of our approach. We will further

examine relaxing the requirement of ground truth keypoint

annotations by incorporating a pose estimation network into

the re-identification pipeline.
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